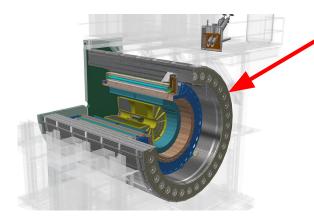
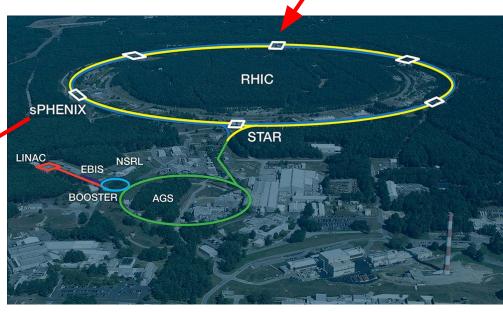
First year(s) results from sPHENIX

The 11th workshop of the APS Topical Group on Hadronic Physics - March 2025

Charles Hughes on behalf of the sPHENIX Collaboration

Outline


- sPHENIX Overview and Detector
- sPHENIX Physics Program
- sPHENIX Physics Results



sPHENIX Overview

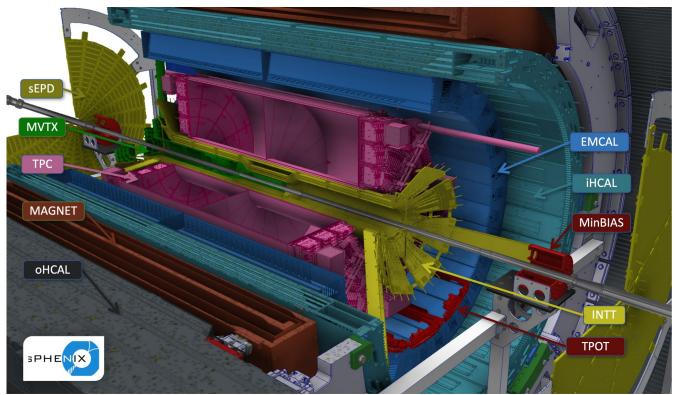
sPHENIX: super Pioneering High Energy
 Nuclear physics experiment

- 322 members, 53 institutes
 - 11 countries

sPHENIX Overview Continued

Tracking Detectors

- MVTX
- INTT
- TPC
- TPOT


Calorimetry

- EMCAL
- HCAL (inner/outer)

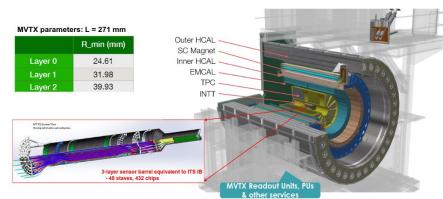
Magnet

Forward Detectors

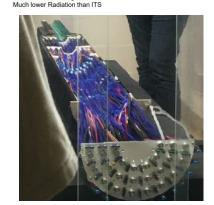
- sEPD
- MBD (minBIAS)
- ZDC/SMD (not shown)

MVTX - Maps-based VerTeX detector

MAPS: Monolithic Active Pixel Sensors


- ALPIDE CMOS Pixel
- 29 x 27 μm

- 48 staves/3 layers


- 9 ALPIDE chips/stave
- 2.4 < r < 4 cm, $|\eta| < 1.1$, full ϕ
- Copy of ALICE ITS2 inner barrel

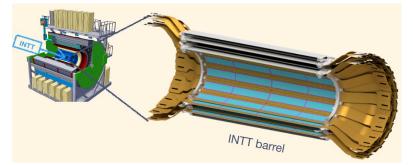
Identifies track vertex position

- O(10 μm) vertex position resolution
- 4 μs integration time
- Streaming or triggered readout
- Key to sPHENIX Heavy Flavor Program

Located Outside Magnet on Platform:

INTT - INTermediate silicon Tracker

Silicon Semiconductor Strip Detectors


- 2 kinds of Hamamatsu silicon modules
- 78 μm x 16 or 20 mm

- 56 staves/2 layers

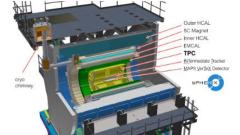
- 32+20 chips/stave
- 7 < r < 11 cm, $|\eta| < 1.1$, full φ

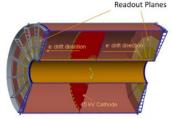
- Precision Timing + Hit Interpolation

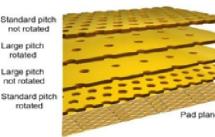
- O(100 ns) resolves bunch x-ing
- O(10 μm) resolution in rφ
- O(1 cm) resolution in z
- INTT NIM-A Pre-print: <u>arXiv:2503.09105</u>

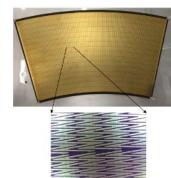
TPC - Time Projection Chamber

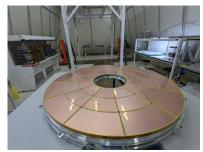
- Gaseous Drift Detector

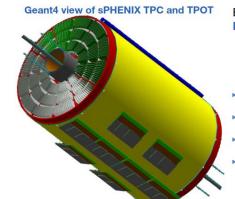

- Ar/CF₄/iC₄H₁₀ 75/20/5 % drift gas
 - 14 µs drift time
- GEM (Gaseous Electron Multiplier) amplification
 - 4 Kapton + Copper GEMs / module
- Un-gated like ALICE TPC
 - Allows for streaming readout
- Zig/Zag segmented copper sensor pads
 - Improved position resolution

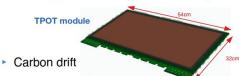

- 72 GEM modules/2 sides


- 36 modules / full φ
- 3 modules / full r
- 20 < r < 78 cm, $|\eta| < 1.1$, full ϕ


- Measures Momentum


- Target momentum resolution:
 - $\Delta p/p = 0.02$ for $p \sim 5$ GeV
- O(150 μm) spatial resolution

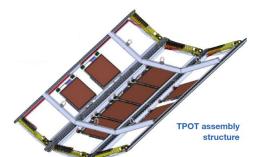



TPOT - Time Projection chamber Outer Tracker

Gaseous Drift Detector

- Ar/iC₄H₁₀ 95/5 % conversion gas
 - 3 mm conversion length
- Micromegas amplification
- Resistive layer w/ strips for readout

Each module = 2 bulk, resistive 1D-Micromegas detectors (back-to-back)


- 1mm/2mm pitch
- Ar/Isobutane (95/5)
- Resistive layer with strips

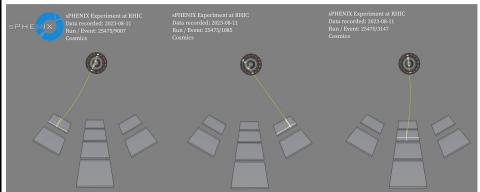
8 modules/bottom of TPC

Partial coverage

Provides reference for TPC

- O(100 µm) spatial resolution
- Calibrates Distortions


TPOT NIM Performance Paper: NIM-A 1066 (2024) 169615



Tracking

MVTX + INTT + TPC - 200 GeV pp collision

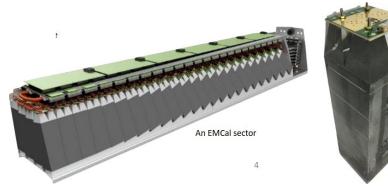
MVTX + INTT + TPOT - cosmic ray data

EMCAL - ElectroMagnetic CALorimeter

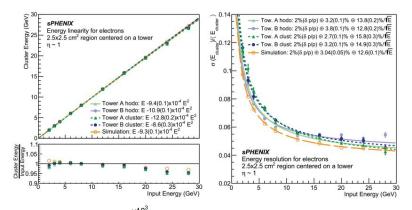
Tungsten-Scintillating Fiber Sampling Calorimeter

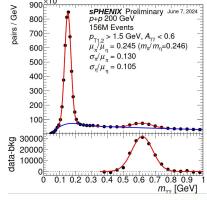
- Light guide + silicon photomultiplier (SiPM)
- Pre-amp board sums signals from SiPMs




- $|\eta|$ < 1.1, full ϕ
- 96 modules / sector 1 module = 2x2 towers
- Towers have projective geometry
- Each tower is $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$

- $0.83 \lambda_{int}$, 20 X_0
- Moliere Radius: 2.3 cm, Absorber Depth: 14 cm
- Energy Resolution: = 5 % ⊕ 16 % / √E


EMCAL - ElectroMagnetic CALorimeter


EMCAL (test beam) performance:

- IEEE Trans.Nucl.Sci. 68 (2021) 2, 173-181
- Linearity and resolution for 2.5 x 2.5 cm² cut centered on a tower

EMCAL reconstruction:

- Proton-proton data show good invariant mass peaks for π^0 and η

HCAL - Hadronic CALorimeter(s)

- Inner + Outer

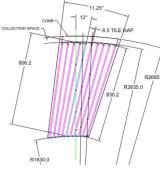
- Al (inner) and steel (outer) absorber plates
- Scintillating tiles w/ embedded WLS fibers

- 32 sectors (both inner & outer HCAL)

- $|\eta|$ < 1.1, full ϕ
- 48 towers / sector
- (1 tower = 4/5 tiles (I/O))
- Towers have projective geometry
- Each tower is $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$

Performance Specs

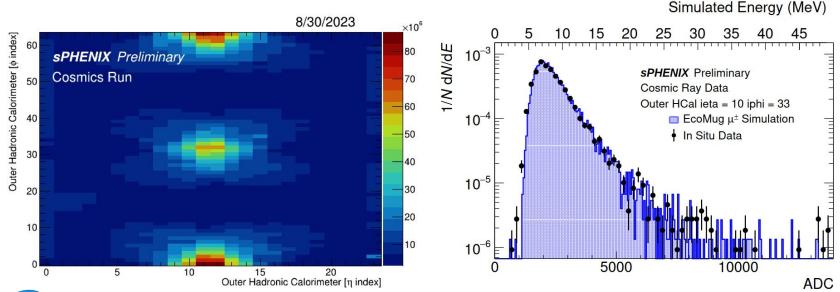
- $5 \lambda_{int}$ for both calos combined
- Energy Resolution: = 14 % ⊕ 81 % / √E for hadrons



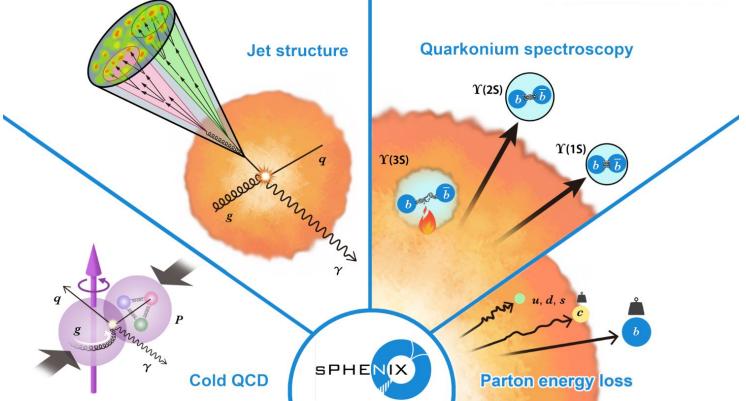
Half of oHCal sector. oHCal scintillating tiles tilted in η from

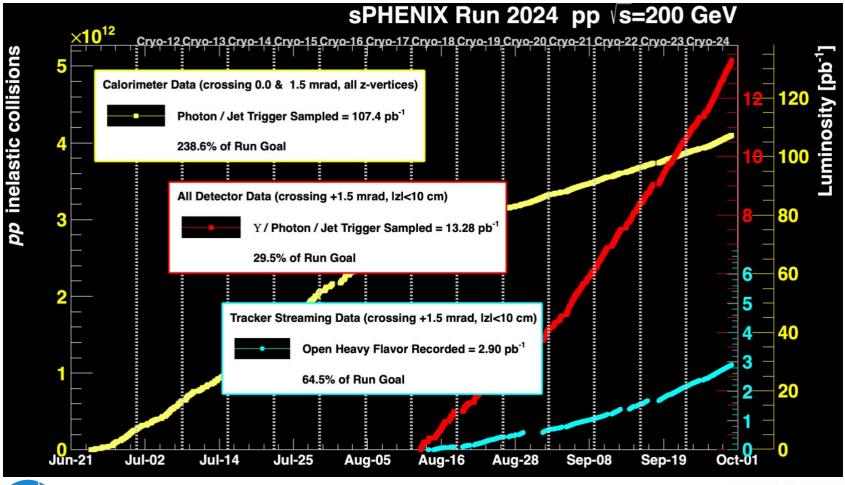
IHCal scintillating production

OHCal scintillating tiles tilted in φ from radius


First mid-rapidity HCAL at RHIC

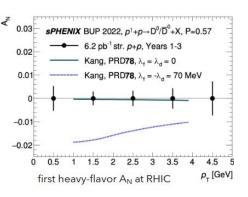
HCAL - Hadronic CALorimeter(s)

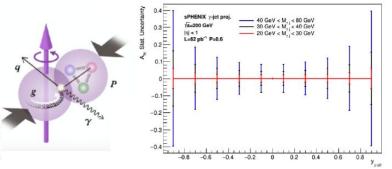

- Cosmic ray data in OHCAL
 - Shows good agreement to simulation


sPHENIX Physics Program

Courtesy of Misaki Ouchida (Hokkaido University)

sPHENIX Physics Program - Cold QCD

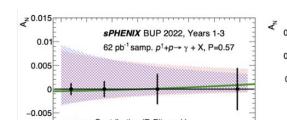

 RHIC can provide polarized proton beams

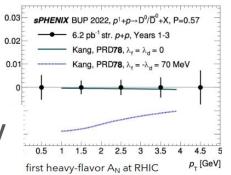

- Planned Measurements (e.g.):
 - A_N -> neutral meson transverse single-spin asymmetry

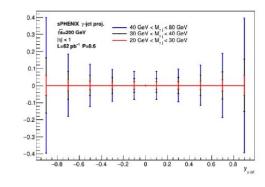
planned sPHENIX cold QCD measurements:

physics	channel	
tri-gluon correlator	neutral mesons, direct γ	
tri-gluon correlator	mesons	
transversity PDF, IFF	di-hadrons	
Collins effect	hadrons-in-jets	
Sivers TMD PDF (valence q)	di-jets	
Sivers TMD PDF (g)	jet- γ	qg scattering @ LO
tri-gluon correlator	inclusive jets	

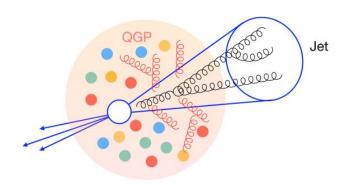
0.01		ENIX Bl b ⁻¹ samp.				57
0.005						WAVI.
0	+					
-0.005	ggg Contrib	ution (D	Pitony	ak)		١.
E	Trigluon Co		*	2000-A	Yoshid	a) -
	Trigluon Co	ntributio	n Mod	el 2 (S.	Yoshid	a)
-0.015	6 7	8	9	10	11	12
expected t	o add to				,	[Ge

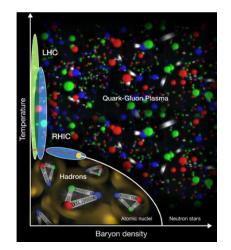


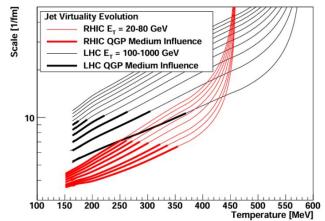

sPHENIX Physics Program - Cold QCD


 RHIC can provide polarized proton beams

- Planned Measurements (o.g.):
 - A_N -> ne See 03.19 talk at Global Summit by Gregory single-sr Mattson:

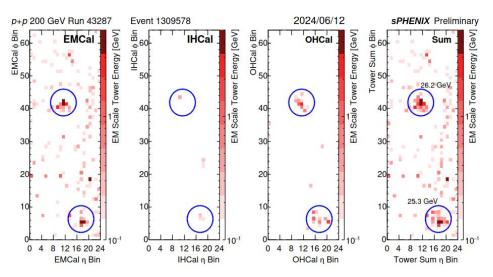


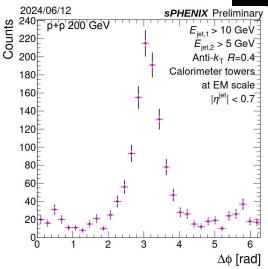




sPHENIX Physics Program - Jets

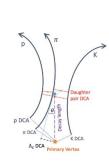
- Jets are collimated showers of particles from initial hard scattering before Quark Gluon Plasma (QGP) formation
- QGP temperature & evolution different at RHIC than LHC

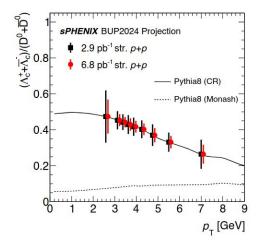


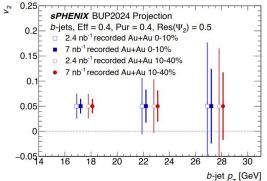


sPHENIX Physics Program - Jets

 Early check showing energy deposits in calorimeters are back-to-back

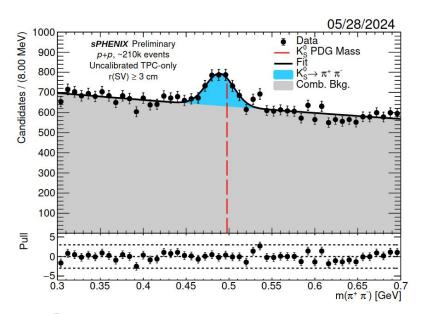


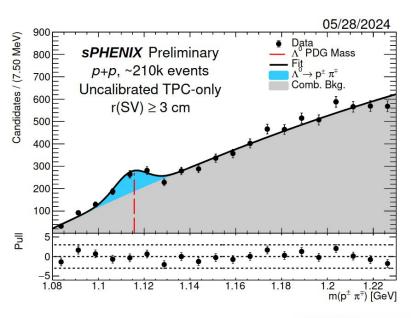



sPHENIX Physics Program - Heavy Flavor

- RHIC and LHC see enhancement of Λ_c baryon to D^0 meson production
 - Future sPHENIX measurement will help discriminate between models

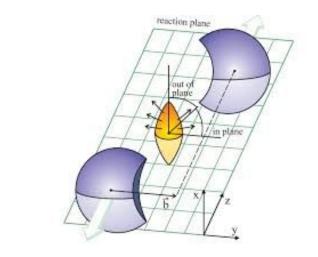
- sPHENIX collects high luminosity p+p data in extended readout and Au+Au data in triggered mode
 - Can help understand this enhancement and hadronization in QGP
 - Streaming capability necessary for HF Jet

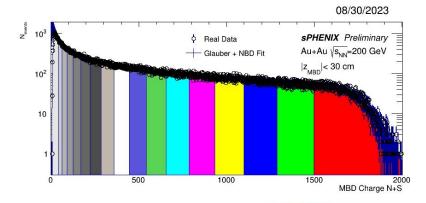




sPHENIX Physics Program - Heavy Flavor

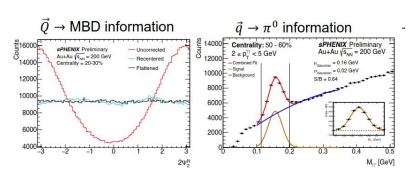
- Initial Results for K_s^0 and Λ^0 in proton-proton data
 - (Uncalibrated) TPC Only Tracks
 - KFParticle is used for resonance reconstruction

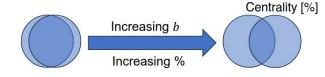


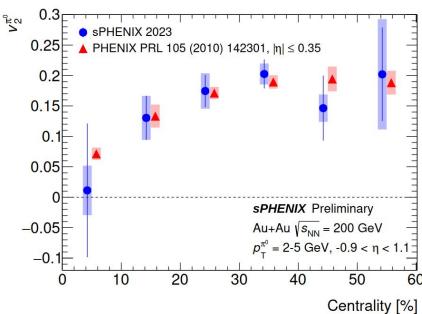

sPHENIX Physics Program - Bulk

- Measurement of bulk properties
 - E_T , V_2 , Ψ_2 , centrality, etc...

- e.g. exploring jet quenching in different event geometries
- e.g. measuring centrality

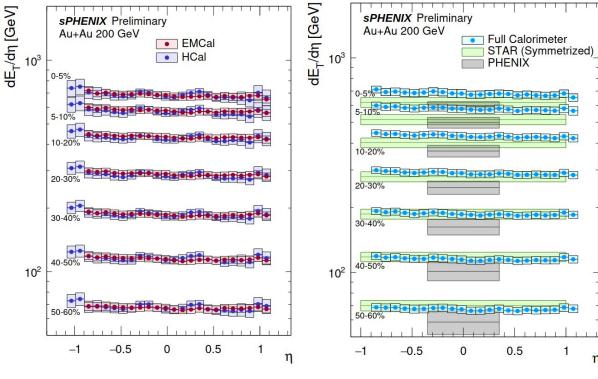





sPHENIX Physics Program - Bulk

- π⁰ v₂ vs centrality good agreement
 to previous RHIC measurements
- scalar product method

$$v_n\{SP\} \equiv Re \frac{\left\langle \vec{q}_{n,j} \vec{Q}_n^{S|N^*} \right\rangle}{\sqrt{\left\langle \vec{Q}_n^S \vec{Q}_n^{N^*} \right\rangle}}$$


Neutral pion v₂ via scalar product method (<u>sPH-CONF-BULK-2024-01</u>)

sPHENIX Physics Program - Bulk

- Fully corrected transverse energy
- Good agreement between HCAL and EMCAL
- Good agreement to previous RHIC measurements

Corrected dE_T/dη (<u>sPH-CONF-BULK-2024-02</u>)

Conclusions

- sPHENIX is a unique detector:
 - Optimized for hard probes, but provides good opportunity for cold QCD and bulk!
- sPHENIX has already taken data in 2023 and 2024:
 - Run 2023 was a AuAu commissioning run still useful for early measurements
 - Run 2024 was a pp physics run achieved more than double its target luminosity for calorimetric photon/jet triggered data
 - Many good initial results (jets/heavy flavor/bulk)
 - (All current and future sPHENIX results available here: https://www.sphenix.bnl.gov/PublicResults)
 - Many more to come (e.g. APS Global Summit & Quark Matter 2025)
- sPHENIX will take data again in 2025
 - First AuAu collisions ~ end of month

More to Come at the APS Global Physics Summit

- Virginia Bailey 03.17.25 11:21 AM PT:
 - "Early results from the sPHENIX calorimeter jet program"
- Evgeny Shulga 03.17 11:57 AM PT:
 - "sPHENIX Tracking performance and Related Physics Studies"
- Gregory Mattson 03.19 11:57 AM PT:
 - "Transverse Single-Spin Asymmetries in Neutral Meson Production with sPHENIX"
- Lameck Mwibanda 03.20 5:36 PM PT:
 - "New Submission Design and performance of MBD in sPHENIX"

(All current and future sPHENIX results available here: https://www.sphenix.bnl.gov/PublicResults)

