Refined Simulations of Double Pion Electroproduction for CLAS22

Alexis Osmond

Columbia, SC

March 14, 2025

This work is supported in parts by the National Science Foundation under Grant PHY 10014377.

Context

 $e+p \rightarrow e'+p'+\pi^++\pi^-$

- Simulating final state used by the program to extract cross sections and resonance parameters (in the resonance region)
- Includes comparison with CLAS12 TwoPion channel
- Feasibility study to see if these measurements can be extended to CLAS22

Outline

- Brief Introduction
 - Experiment: CLAS12
 - Simulation: TWOPEG
- Updated histograms
 - Acceptance
 - Momentum vs. Δt
 - Missing mass squared resolution
 - Slice normalization: W vs. MM², Q² vs. MM²
- Feasibility
 - Integrated hadronic cross section
 - Needed integrated luminosity, needed integrated charge, and needed beam time

Continuous Electron Beam Accelerator Facility

Thomas Jefferson National Accelerator Facility (JLab) Newport News, VA

HOW CEBAF WORKS

CLAS12

- CEBAF Large Acceptance
 Spectrometer
 - 12 GeV
- Forward Detector
 - Drift Chambers (Regions 1, 2, and 3)
 - Forward Time-of-Flight (FTOF)
- $\Delta t = electron vertex time hadron vertex time$
 - Vertex time: calculated time a particle interacted with the target

TWOPEG: Two-Pion Event Generator

- For $\pi^+\pi^-$ electroproduction off protons
 - Iuliia Skorodumina
- Available on GitHub
- Weighted event generation
- Each event is weighted by cross section
 - Cross sections include physics of double pion electroproduction in each W-Q² bin
- Produces LUND files
- LUND format limited to precision 6

$$W = \sqrt{(p_{\mu} + q_{\mu})(p^{\mu} + q^{\mu})} = \sqrt{(p'_{\mu} + \pi^{+}_{\mu} + \pi^{-}_{\mu})(p'^{\mu} + \pi^{+\mu} + \pi^{-\mu})}$$

SOUTH CAROLINA

 $e + p \to e' + p' + \pi^+ + \pi^-$

$$Q^2 = -q_\mu q^\mu$$
, $q^\mu = e^\mu - e'^\mu$

Invariant mass vs. four-momentum transfer squared (W vs. Q^2)

• Goal for 22 GeV: increase four momentum transfer (Q²)

$$W = \sqrt{(p_{\mu} + q_{\mu})(p^{\mu} + q^{\mu})} = \sqrt{(p'_{\mu} + \pi^{+}_{\mu} + \pi^{-}_{\mu})(p'^{\mu} + \pi^{+\mu} + \pi^{-\mu})} \qquad Q^{2} = -q_{\mu}q^{\mu}, \quad q^{\mu} = e^{\mu} - e'^{\mu}$$

$$\frac{\nabla N + \nabla E R S + T Y}{\text{SOUTH}} \qquad \text{Alexis Osmond aosmond@email.sc.edu March 14, 2025} \qquad \text{Jefferson} \qquad 7$$

$$7$$

Acceptance

$$\text{Acceptance} = \frac{\sum \text{weights}_{\text{reconstructed}}}{\sum \text{weights}_{\text{generated}}}$$

- Weights are cross sections averaged in each bin
- Artificially large acceptance (yellow bin, low W, high Q²)
- Limited number of significant figures
- Weights assigned zero due to lack of precision

UNIVERSITY ONE

Acceptance

- Similar problem seen in 22 GeV simulation
- Low W, high Q² range known for weights equal to zero
- Zeros due to lack of precision
- Increase precision, decrease artificially high acceptance

SOUTH CAROLINA

Alexis Osmond aosmond@email.sc.edu March 14, 2025

Jefferson Lab

 $\Delta t = electron vertex time - hadron vertex time$

10.6 GeV experiment

Fall 2018, inbending, pass 2, golden runs

∆t ftof pi positive withoutID

5 Momentum (Ge

10.6 GeV experiment Fall 2018, inbending, pass 2, golden runs

10.6 GeV experiment Fall 2018, inbending, pass 2, golden runs

10.6 GeV simulation TWOPEG event generator, pass 2

10.6 GeV experiment Fall 2018, inbending, pass 2, golden runs

10.6 GeV simulation TWOPEG event generator, pass 2

22.0 GeV simulation TWOPEG event generator, pass 2

Alexis Osmond aosmond@email.sc.edu March 14, 2025

Jefferson Lab

Δt ftof pi positive withID

Δt ftof pi positive withID

Δt ftof pi positive withID

Momentum (GeV

Momentum (GeV)

Momentum (GeV)

0.20

0.12

π

π

 π^+

10.6 GeV experiment Fall 2018, inbending, pass 2, golden runs

10.6 GeV simulation TWOPEG event generator, pass 2

22.0 GeV simulation

Missing Mass Squared Resolution, mPim

10.6 GeV simulation

10.6 GeV experiment Fall 2018, inbending, pass 2, golden runs TWOPEG event generator, pass 2 MM² Resolution MM² Resolution 1.4 $\sigma = 0.04560$ $\sigma = 0.03080$ 25000 $\sigma_{fit} = 0.02855$ $\sigma_{fit} = 0.01558$ 1.2 20000 1.0 0.8 15000 0.6 10000 0.4 5000 0.2 0.0 0+-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100 -0.075 0.000 0.025 0.050 0.075 -0.050 -0.025 0.100MM² (GeV²) MM² (GeV²)

Missing Mass Squared Resolution, mPim

 Q^2 vs. MM² for mPim

Normalized Q² vs. MM² for mPim

MM² for mPim

10.6 GeV experiment

Fall 2018, inbending, pass 2, golden runs

24

Jefferson

Lab

10.6 GeV simulation

22.0 GeV simulation

TWOPEG event generator, pass 2

Alexis Osmond aosmond@email.sc.edu March 14, 2025

Normalized Q² vs. MM² for mPim

Normalized W vs. MM² for mPim

MM² for mPim

10.6 GeV experiment

Fall 2018, inbending, pass 2, golden runs

MM² for mPim

10.6 GeV experiment Fall 2018, inbending, pass 2, golden runs

MM² for mPim

10.6 GeV experiment Fall 2018, inbending, pass 2, golden runs

MM² (GeV²)

MM² (GeV²)

MM² for mPim

10.6 GeV experiment Fall 2018, inbending, pass 2, golden runs

> **10.6 GeV simulation** TWOPEG event generator, pass 2

> 22.0 GeV simulation TWOPEG event generator, pass 2

Alexis Osmond aosmond@email.sc.edu March 14, 2025

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100

MM² (GeV²)

 MM^2 for 2.40 $\leq W < 2.45$

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100

MM² (GeV²)

 MM^2 for 2.40 $\leq W < 2.45$

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100

MM² (GeV²)

 MM^2 for 2.40 $\leq W < 2.45$

 $\sigma = 0.04776$

 $\sigma_{fit} = 0.03030$

 $\sigma = 0.03496$

 $\sigma_{fit} = 0.02024$

 $\sigma = 0.04414$

 $\sigma_{fit} = 0.03193$

900

800

700

600

500

400

300

200

100

0.08

0.06

0.04

0.02

0.00

0.008

0.007

0.006

0.005

0.004

0.002

0.001

0.000

Feasibility

- Integrated hadronic cross section
- Needed integrated luminosity
- Needed integrated charge
- Needed beam time, in years

Acceptance

 $\sum weights_{reconstructed}$ Acceptance = $\overline{\sum weights_{generated}}$

Jefferson Lab

Integrated hadronic cross sections

- Total probability for double pion electroproduction
- σ_{had} = sum of gen weights / number of gen events
- Cross section calculated to be represented in microbarns
 - 1 µb = 10⁻³⁰ cm²

UNIVERSITY ONE

Needed luminosity

• σ_{elec} calculated similarly to σ_{had}

UNIVERSITY

SOUTHCAROLIN

• Luminosity $\mathcal L$ determined from acceptance and σ_{elec}

Needed integrated charge

• Charge calculated from luminosity by dividing out target density

Beam time needed, in years

- Calculation for 10.6 GeV: implementing all analysis cuts [3/2], Golden Run Selection [3], PAC Days [2]
- For 22 GeV: 8 (16) years at 5.96 10³⁴ cm⁻² s⁻¹ or 11 (22) months at 5 10³⁵ cm⁻² s⁻¹
 - Days (PAC Days)

UNIVERSITY ON F

SOUTHCAROLIN

Conclusion

- Acceptance calculation improved with increased precision in the TWOPEG event generator
 - Achieved a better description of the high Q² area
- Resolution for 10.6 GeV experiment (Fall 2018, inbending, golden runs) is comparable to resolution for 22 GeV simulation
- Needed beam time at designed luminosity is of the order of 11 months (22 PAC months)
 - Too early to say definitively how many PAC days (need more statistics)

Backup slide: Calculation of time needed

 $Acceptance = \frac{\sum weights_{reconstructed}}{\sum weights_{generated}}$

$$\Phi = \frac{\left(\omega - \frac{Q^2}{2M_P}\right)}{137 \cdot 2\pi \cdot E_{\text{beam}} \cdot Q^2 \cdot (1 - \epsilon)} \cdot \frac{W}{E_{\text{beam}} \cdot M_P}$$

$$\sigma = \frac{\sum \text{weights}_{\text{generated}}}{\text{number of generated events} \cdot \Phi} \cdot \left[\frac{1}{\left(1 + \frac{Q^2}{0.7}\right)^{0.31660}}\right] \cdot \left[\left(\frac{1}{\left(1 + \frac{0.65}{0.7}\right)}\right)^{-1.18085}\right]$$

$$\begin{split} \Phi &= \text{flux}, 1/\text{GeV}^3 \\ \omega &= \text{energy transfer (virtual photon energy), GeV} \\ M_P &= \text{mass of proton, GeV} \\ E_{beam} &= \text{energy of electron beam, GeV} \\ \sigma &= \text{cross section, } 1\,\mu b = 10^{-30}\,\text{cm}^2 \\ \sum \text{weights}_{\text{generated}} = \text{sum of generated event weights, cm}^2 \\ \text{terms in brackets []} &= \text{correction factors, dimensionless} \end{split}$$

 $\sigma_{\rm elec} = \frac{\sum {\rm weights}_{\rm generated}}{{\rm number of generated events}}$ $\int \mathcal{L}_{\rm elec} \, dt = L_{elec} = \frac{2 \cdot 10^{33}}{\sigma_{\rm elec} \cdot {\rm Acceptance}}$

$$Q_{\text{elec}} = \frac{L_{\text{elec}}}{1.324 \cdot 10^{42}}$$

т

$$T_{
m sec} = rac{Q_{
m elec}}{45 \cdot 10^{-9} \, {
m C/s}}$$

$$T_{
m years} = rac{Q_{
m elec}}{31,536,000\,
m s/year}$$

