

Light meson spectroscopy: experimental status

Alessandra Filippi INFN Torino

GHP 2025 Anaheim, March 14-16, 2025

Outline of the talk

- Genera features of light mesons
- Investigation methods
- News on non-strange exotic candidates
 - Search for hybrid mesons and glueballs
- Conclusions

observations made in the

Only a selection will be

Light mesons features

- Light meson mass region (below ~2.2 GeV) very packed
- Several (mostly broad) resonances with the same quantum numbers
 - Interfering
 - Overlapping
 - (possibly) mixing
 - Decays in the same and/or different channels
- Difficult identification
 - Resonances do not always appear as peaks
 - Peaks are not always generated by a resonance!
- The analysis of a single channel is usually not enough to disentangle and identify states unambiguously
- More tools and experimental inputs needed
 - Important to exploit as many experimental information as possible!

spectrum of well established states

Hadrons beyond the Constituent Quark Model

- QCD intrinsically allows for the existence of hadrons formed by gluons only, or a mixture of quarks and gluons
 - Their quantum numbers may be the same as for ordinary q
 q
 q
 pairs... but they can also be forbidden combinations!

The meson spectrum from Lattice QCD

[Dudek, Edwards, Guo, Thomas, PRD 88 094505(2013)]

- State-of-art calculations with $m_{\pi} = 391 \text{ MeV/c}^2$
- Expectations for masses in overall agreement with observations
 - Towers of excited states similar to quark models

May include gluonic contributions

- Additional hybrid meson supermultiplet
- Lightest $|q\bar{q}g\rangle$ hybrid state: isovectors with exotic $J^{PC} = 1^{-+}$
- First predictions for hybrid partial widths

(Woss et al. PRD 103(2021), 054502)

Meson production mechanisms

Charmonium radiative decays

- Ideal environment for glueball searches
- Glueball production rates could be higher than in normal mesons
 - Processes mediated by 2- or 3g
- Isospin filter: final states dominated by I=0 processes
 - OZI rule
- Spin parity filter: C = +1
 J^{PC} = 0⁻⁺, 0⁺⁺, 1⁺⁺, 2⁺⁺, 2⁻⁺
- Clean environment in e⁺e⁻ collisions
 - BESIII accumulated so far 10 B J/ψ , and 3B $\psi(2S)$
 - World largest data samples of charmonium resonances

Search for exoticspin resonances: hybrids

□ The case of the $\pi(1600)$

- Diffractive dissociation at COMPASS
- Photoproduction at GluEx

Observation of a new isoscalar at BESIII

Sticky fellows: hybrids

- Formed by quarks, anti-quarks and excitation gluon fields
- Low lying hybrids can have exotic quantum numbers 1^{+-} , 1^{-+} , 2^{+-} forbidden by $\bar{q}q$ configuration

LQCD prediction: lightest exotic 1⁻⁺ nonet in the mass range 1.7-2.1 GeV/c²

Preferred decays: S+P wave mesons

- Main mode: $b_1(1235)\pi \rightarrow \omega\pi\pi$
- Other decays expected to be suppressed: $\rho\pi, \eta\pi, \eta'\pi$
- Some indications for isovector 1⁻⁺: $\pi_1(1400), \pi_1(1600), \pi_1(2015)$
- 1⁺ isoscalar?
 - Can be produced in J/ψ radiative decays
 - Can decay to $\eta\eta'$ in P-wave

The $\pi_1(1400)/\pi_1(1600)$ case in a nutshell

Hints for spin exotics since the 80's

Two signals observed:

Novel observations of $\pi_1(1600)$ from COMPASS

- $b_1(1235)\pi \rightarrow \omega\pi\pi$ spectroscopy:
 - $\pi^-p
 ightarrow \omega \pi^- \, \pi^0$ @190 GeV
 - States observed in the $b_1(1235)\pi$ channel (+others in $\rho^-\omega$)
 - $1^{-+}: \pi_1(1600) \to b_1(1235)\pi$
 - $2^{++}: a_2(1320), a_2'(1700) \rightarrow b_1(1235)\pi$
 - Possible additional signals from
 - $3^{++}: a_3 (1320)$
 - 4⁺⁺: *a*₄ (1970)
- $\eta^{(\prime)}\pi$ spectroscopy: $\pi^-p \rightarrow \eta^{(\prime)}\pi^0$ @190 GeV
 - $\pi_1(1400) \to \eta\pi$
 - $\pi_1(1600) \rightarrow \eta' \pi$
 - Coupled channel analysis compatible with a single pole at high mass
 - Single pole hypothesis also compatible with coupled channel COMPASS+Crystal Barrel data analysis (EPJC80(2020),453)

Novel observations of $\pi_1(1600)$ from GluEx

- Photoproduction reaction with polarized photons
- $\eta\pi$ spectroscopy
 - Dominant $a_0(980)$ and $a_2(1320)$

• $b_1(1235)\pi$ spectroscopy

- No clear signal observed for $\pi_1(1600)$: upper limit set
 - Use the upper limit to assess a limit for the relative production to $a_2(1320)$ in $\eta^{(\prime)}\pi$
 - $\pi_1(1600)$ could be significant in $\eta'\pi$ Largely excluded in $\eta\pi$

A new hybrid candidate from BESIII: $\eta_1(1855)$

- Evidence of isovector $1^{-+} \pi_1(1600)$ in $\psi' \to \gamma \chi_{c1} (\chi_{c1} \to \pi^+ \pi^- \eta')$ [10 σ] • Analysis in progress
- Evidence for a **new isoscalar** $1^{-+} \eta_1(1855)$ in $J/\psi(1S) \rightarrow \gamma \eta' \eta$ [>19 σ]
 - $m = (1855 \pm 9^{+6}_{-1})$ MeV, Γ $= (188 \pm 18^{+3}_{-8})$ MeV, decay in $\eta' \eta$
 - Isoscalar partner of $\pi_1(1600)$ in 1⁻⁺ nonet?
 - Signature of a tetraquark or molecule?
 - Agreement with LQCD expectations

PRL129 (2022), 192002

PRD106 (2022), 072012

The scalar and pseudoscalar sectors: glueballs footprints?

Sticky fellows: glueballs

- Unique particles with self-interactions
- No valence quark content, gluons only
- Strongly produced in gluon-rich processes
- Glueball decays:
 - Flavor blindness
 - $\Gamma(G \to \pi\pi: K\overline{K}: \eta\eta: \eta\eta': \eta'\eta') = 3: 4: 1: 0: 1$
 - $\eta \eta'$ decay suppressed: important information from J/ $\psi \rightarrow \gamma \eta \eta'$ radiative decay
 - 1⁻⁻ could decay like charmonium
 - 0^{-+} could decay like $\eta_c \rightarrow \gamma \pi \pi$
 - Good place to search: $J/\psi \rightarrow \gamma \pi \pi \eta'$
- LCQD expectations:
 - 0⁺⁺ ground state: 1.5-1.7 GeV/c²
 - 2⁺⁺ ground state: 2.3-2.4 GeV/c²
 - 0⁻⁺ ground state: 2.3-2.6 GeV/c²

The scalar glueball: a bit of history

- Lightest glueball candidate until the y2000: scalar state
- $f_0(1500)$ observed by Crystal Barrel and OBELIX in $\overline{N}N$ @LEAR-CERN

$f_0(1500)$ and $f_0(1710)$ at BESIII

• $J/\psi \rightarrow \gamma \eta \eta'$

- *f*₀(1500) → ηη' : significant contribution
- $f_0(1710) \rightarrow \eta \eta'$: not observed
- $J/\psi \rightarrow \gamma \eta' \eta', J/\psi \rightarrow \gamma K_S K_S, J/\psi \rightarrow \gamma \pi^0 \pi^0$ • Large $f_0(1710)$ production (assuming $f_0(1810)$ is the same object)
- f₀(1710) can have a large gluonic content or a sizeable overlap with the ground state scalar glueball

PRL129 (2022), 192002

The pseudoscalar and axial vector sectors: the old E/i puzzle

- Long standing problem since the 70's: superimposition of several pseudoscalar and axial states in the (1.3-1.5) GeV mass region, decaying to $\overline{K}K\pi$ \Rightarrow "E/1 puzzle"
- The $\overline{K}K\pi$ decay channel is only possible for $J^P = (odd)^+ or (even)^-$

Pseudoscalar states 0⁻⁺

- All of them decay to $a_0(980)\pi$, K^*K , $\overline{K}K\pi$
- $\eta(1275)$: First η' radial excitation?
- $\eta(1440)$: likely split in two states
 - **\eta(1405)** : true gluonium candidate?
 - Not observed in $\gamma\gamma$ collisions, large production in gluon rich environments $(J/\psi \ decays, peripheral production, <math>\overline{p}p$ annihilation)
 - **4** $\eta(1475)$: radially excited \bar{ss} state in $K^*\bar{K}$?
 - Observed in γγ collision
 - Not seen in K⁻p collisions

Axial states 1⁺⁺

- $f_1(1285)$: does not decay to $K^*\overline{K}$
- $f_1(1420)$: hybrid $\bar{q}qg$? 4-quark state? $K^*\bar{K}$ molecule?
- $f_1(1510)$: not established yet

 $\overline{p}p \rightarrow K^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-$

• + isovector $a_1(1420)$ (COMPASS)

$\eta(1405)/\eta(1475)$ puzzle: BESIII recent results

JHEP**03** (2023). 121

- $J/\psi \to \gamma K_S K_S \pi^0$
 - Prominent structures around 1.45 GeV
 - Clear bump about 1.28 GeV
 - Two isoscalar states $\eta(1405)/\eta(1475)$ can fit well the data

- $J/\psi \to \gamma \gamma \phi$
 - Clear observation of η(1405) [18.9σ]
 - η(1475) cannot be excluded
- The nature of η(1405) is still unclear

X(2370): a pseudoscalar glueball?

- A wealth of pseudoscalar "X" states observed by BESIII, starting from the 10B $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ sample
- X(2370) observed in several gluon-rich decay channels:
 - $\eta' \pi^+ \pi^-, \eta' K^+ K^-, \eta K_S K_S, \pi^0 K_S K_S, \\ \eta \pi^0 \pi^0, a_0 (980) \pi^0$
 - Analog to η_c decay pattern
- ✓ $J^{PC} = 0^{-+}$
 - Mass and production rates consistent with LQCD expectations for the lightest
 pseudoscalar glueball

Conclusions

- Over the last 30 years a significant amount of data was collected and analyzed, but still many unsolved questions
 - Lots of broad and overlapping signals observed
 - A complete and unambiguous identification of all the component of $\bar{q}q$ multiplets is still missing
- More sophisticated approaches needed for light mesons coupled to different production and decay channels
 - unitarity is violated by simple single-channel approach
- Most significant recent observation: spin exotic 1⁻⁺ wave
 - $\eta\pi$ @1.4 GeV, $\eta'\pi$ @ 1.6 GeV in pion diffraction, observed also in photoproduction and J/ψ decays
- Mostly important: match and combine observations for high statistics experiments in as many production and decay channels as possible

Backup slides

"Fake" resonance: the $a_1(1420)$ case

COMPASS

- Clear peak at 1.4 GeV: $a_1(1420)$
 - exotic $J^{PC} = 1^{++}$ in $f_0(980)\pi$
 - Resonant behavior (also correct phase motion!)
 - Not an ordinary meson
 - Small width, narrower than the ground state $(a_1(1260): \Gamma \sim 500 \text{ MeV})$
 - Too close to ground state: 400 MeV expected from radial excitation trajectories
 - Seen only in one channel: $f_0(980)\pi$

- It can be better explained by a three body rescattering effect: triangle-singularity mechanism
 - $a_1(1260) \rightarrow K^*(\rightarrow \pi K)\overline{K} + \text{ rescattering to } f_0(980)$

Indications for tensor glueballs

*f*₂(1950)

- Observed by several experiments, beyond the known $f_2(1270)$ ($\bar{n}n$) and $f_2(1525)$ ($\bar{s}s$)
 - GAMS (1995): $f_2(1950) \rightarrow \pi\pi$
- Ground state of the Pomeron?

*f*₂(2340)

- Large $\bar{p}p \rightarrow \phi \phi$ production (JETSET)
- Large cross section in $\pi^- p \rightarrow \phi \phi n$
- Observed by BESIII in $J/\psi \rightarrow \gamma \phi \phi$
 - Relatively narrow
 - Several decay channels
 - Mass substantially lower than LQCD predictions

•	Expected decay width:
	$\Gamma(J/\psi ightarrow \gamma G_{2+}) = 1.01(22)$ keV
	$J/\psi \rightarrow \gamma f_2(2340)$ decay modes:
	$f_2(2340) \to \eta\eta$
	$f_2(2340) \to \phi\phi$
	$f_2(2340) \to K_S K_S$
	$f_2(2340) \rightarrow \eta' \eta'$

The scalar sector in a nutshell

- Since the 90's: too many observed states to be fit into the scalar nonet
 - The "isoscalar ($\pi\pi$) S-wave puzzle"
- Three "confirmed" f₀ mesons and a couple of suspects
 - $f_0(980), f_0(1300), f_0(1590)$
 - $f_0(1500), f_0(1370)$

- Experimental facts:
 - The first radial excitation should be 2-300 MeV heavier than the ground state
 - $f_0(1500)$ could be OK as hidden strange component of the nonet whose ground state is the $f_0(1370)$
 - $f_0(1500)$ almost degenerate with $f_2'(1525)$, sound D-wave $\bar{s}s$ candidate
- Open questions:
 - $f_0(1500)$ as glueball candidate?
 - Is $f_0(980)$ (aka κ) the $\bar{s}s$ partner of $f_0(1370)$?

$f_0(1500)$ observations in *B* decays

- B decays are flavor filters:
 - $B^0 \to J/\psi(1S)X$ filters out $X \, \overline{d}d$ component
 - $B_s^0 \to J/\psi(1S)X \text{ filters out } X \overline{ss} \text{ component}$
 - Very similar to D_s^+ decay
- Indications on *J*=even mesons features from $B_s^0 \rightarrow J/\psi(1S)X_{J=0,2}$
 - LHCb (2014): $B_s^0 \to J/\psi(1S)\pi^+\pi^-$
 - Largest component by $f_0(980)$, $f_0(1500)$ one order of magnitude smaller
 - Belle (2008): absence of $f_0(1500)$ in $\gamma\gamma$ collisions
- Indications for $f_0(1500)$ found in $B^+ \rightarrow K^+ K^- K^+$ decay
 - Belle (2005)
 - not confirmed by BaBar (2006)

