Exploring QCD with Jet Substructure Measurements

Workshop of the APS Topical Group on Hadronic Physics 2025 Dhanush Hangal

March 15, 2025

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Why Jets?

Jets are rich objects whose formation involves rich QCD dynamics ٠

GHP

Jet Substructure: Powerful tools in QCD

Jet Substructure first used to tag and differentiate boosted ٠ objects from QCD jets

VS.

JHEP 1103:015.2011

W

0

g/q

Topical Group on Hadronic Physics

Jet Substructure: Powerful tools in QCD

- Jets are rich objects whose formation involves rich QCD dynamics
- Jet Substructure first used to tag and differentiate boosted objects from QCD jets
- Jet substructure has since been critical in analyzing and studying
 - Parton Showers and hadronization processes ٠
 - Heavy flavor physics ٠
 - Quark-Gluon Plasma physics among many others!

Lawrence Livermore National Laboratory

parton

splitting into two prongs

clustering

declustering

Dhanush Hangal

adronic Physics

arXiv:2303.13347

Mapping the Evolution of a Jet

Lawrence Livermore National Laboratory

Dhanush Hangal

JHEP12(2018)064

The (Primary) Lund Jet Plane

JHEP12(2018)064

Lawrence Livermore National Laboratory

The Lund Jet Plane

Lawrence Livermore National Laboratory

Each given emission creates new phase space (a triangular leaf) for further emissions.

The Lund Jet Plane

Unfolded measurements of the Primary Lund Jet plane in pp collisions

Lawrence Livermore National Laboratory

Dhanush Hangal

RS Topical Group on Hadronic Physics

The Lund Jet Plane Projections

Unfolded measurements of the Primary Lund Jet plane in pp collisions

JHEP 05 (2024) 116

Lawrence Livermore National Laboratory

Dhanush Hangal

Hadronic Physics

Jets in Heavy-Ion Collisions

- Collide nuclei at the LHC and RHIC to produce droplets of ٠ hot, dense quark-gluon plasma
- Use jets as probes to study the properties of the QGP •

Jets in Heavy-Ion Collisions

- Collide nuclei at the LHC and RHIC to produce droplets of hot, dense quark-gluon plasma
- Use jets as probes to study the properties of the QGP

$$R_{\rm AA} = \frac{\text{per-NN yields in PbPb}}{\text{yields in } pp}$$

Jet Substructure in Heavy-Ion Collisions

Lawrence Livermore National Laboratory

Can the medium resolve splittings below a threshold angle?

ATLAS : r_g yield in pp

The r_g distributions are observed to peak at lower values of $r_{\rm q}$ with increasing jet $p_{\rm T}$

ATLAS

Phys. Rev. C 107 (2023) 054909

Topical Group on Hadronic Physics

13

Increasing jet p_T

ATLAS

Lawrence Livermore National Laboratory

ATLAS : R_{AA} vs. r_g

 $R_{\rm AA} = \frac{\text{per-NN yields in PbPb}}{\text{yields in } pp}$

opical Group on ladronic Physics

14

- The R_{AA} value is observed to depend significantly on jet r_g
- Jets with largest r_g are twice as suppressed as those with the smallest r_g in central Pb+Pb collisions

Lawrence Livermore National Laboratory

ATLAS : R_{AA} vs. (r_g and jet p_T)

 $R_{\rm AA} = \frac{\text{per-NN yields in PbPb}}{\text{yields in } pp}$

The R_{AA} values do not exhibit a strong variation with jet p_T in any of the r_a intervals < 501 GeV pp r_g $R_{\rm AA}$ Inclusive ⊦.2[⊢] 0 - 10 % ATLAS *pp* 5.02 TeV, 260 pb⁻¹ РТ AA Pb+Pb 5.02 TeV, 1.72 nb⁻¹ V anti-k, R = 0.4 jets 315 jet p_⊤ |y| < 2.10.8 $z_{\rm cut} = 0.2, \beta = 0$ 0.6 < p_T < 200 GeV Yield $p_{\tau}^{\text{jet}} > 158 \text{ GeV}$ 0.4 <mark>---</mark> 158 < p_⊤^{jet} < 200 GeV r_g + 200 < p_{τ}^{jet} < 315 GeV 0.2 315 < p^{jet}_τ < 501 GeV</p> 158 0.01 0.02 0.003 0.1 0.2 jet p_T r_g jet pT Phys. Rev. C 107 (2023) 054909

Lawrence Livermore National Laboratory

Dhanush Hangal

Topical Group on Hadronic Physics 15

ATLAS : R_{AA} vs. (r_g and jet p_T)

Lawrence Livermore National Laboratory

per-NN yields in PbPb $R_{AA} =$ yields in pp

 $p_{T,1} + p_{T,2}$

 $z_g =$

Soft-Drop condition

 $\frac{\min(p_{T,1}, p_{T,2})}{2} > z_{cut} (R_g / R_{jet})^{\beta}$

The R_{AA} is observed to have a clear ordering with respect to the splitting angle r_{a}

16

Formation time

 $R_{\rm AA} = \frac{\text{per-NN yields in PbPb}}{\text{yields in } pp}$

Look at formation time (τ) to select jets with different degrees of quenching without biasing their initial pT

Lawrence Livermore National Laboratory

Dhanush Hangal

RS Topical Group on Hadronic Physics 17

Jet Substructure : Long Journey Ahead

- Jet evolution in a hot and dense QCD medium is a multiscale problem and requires a comprehensive characterization
- Need to better understand what we're measuring with the novel observables and analysis methods in the field

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

CMS : Photon-tagged jet r_g for $x_{Jy} > 0.8$

"It is found that jets with $p^{jet} / p^{\gamma} > 0.8$, i.e., those that closely balance the photon p^{γ}_{T} , are narrower in PbPb than in pp collisions."

ATLAS

CMS : Photon-tagged jet r_g for $x_{Jy} > 0.4$

"Relaxing the selection to include jets with $p^{jet} / p^{\gamma} > 0.4$ reduces the narrowing of the angular structure of jets in PbPb relative to the pp reference."

Lawrence Livermore National Laboratory

Dhanush Hangal

Topical Group on Hadronic Physics 21

CMS : Photon-tagged jet r_g for $(x_{J_{\gamma}} > 0.8 \text{ vs. } x_{J_{\gamma}} > 0.4)$

"In contrast to the trends observed by the ALICE and ATLAS Collaborations for R_g in inclusive jet events, we do not observe a narrowing of the substructure of jets in R_g within the experimental uncertainties when selecting jets with $x_{yj} > 0.4$ and $p_{yT} > 100$ GeV."

Lawrence Livermore National Laboratory

CMS vs. ATLAS measurement interpretations

Lawrence Livermore National Laboratory

Dhanush Hangal

Topical Group on Hadronic Physics 23