Symmetries of vacuum observed in meson-nucleus bound systems

RIKEN Nishina Center Kenta Itahashi

ir	οι	ıр	0)n
: F	h	ÿ:	si	cs

Symmetries of vacuum observed in meson-nucleus bound systems

Quantum bound states

• Chiral symmetry

Dominant symmetry of the vacuum in low energy region Spontaneous breakdown due to non-perturbative QCD Chiral condensate as an order parameter

• Axial U(1) symmetry - quantum anomaly *Topological structure vacuum* Instanton induced interaction Gluon dynamics

iro	u	þ	0	n
: PI	hý	's	ic	s

Pseudo-scalar mesons in the lowest-mass nonet

η'

PS meson masses distribute in 140 - 960 MeV/c²

З

Pseudo-scalar mesons with various symmetry breaking patterns

PS meson masses distribute in 140 - 960 MeV/c²

 η' has peculiarly large mass

x symmetry manifests π,K,η₈,η₀

PS mesons degenerate upon chiral symmetry restoration

Nagahiro et al., PRC 87 (2013) 045201 Jido et al., NPA 914 (2013) 354

Pseudo-scalar mesons with various symmetry breaking patterns $[MeV/c^2]$ + explicit xs breaking 1000 dynamical x symmetry breaking η_0 750 PS meson-mass spectrum reflects <u>underlying symmetry of vacuum</u> 500 π, K, η_8, η_0 K 250 π,**K**,η₈ massless

PS meson masses distribute in 140 - 960 MeV/*c*²

n' has peculiarly large mass

PS mesons degenerate upon chiral symmetry restoration

> Nagahiro et al., PRC 87 (2013) 045201 Jido et al., NPA 914 (2013) 354

Nagahiro et al, PRC 74, 045203 (2006)

Pseudo-scalar mesons with various symmetry breaking patterns

Nucleus as high p "femto" laboratory Masses of PS mesons change in nucleus

pionic atoms

η'-mesic nuclei

Meons as probes

π, Κ-, η, η'...

Pionic atoms and chiral symmetry

Pionic atoms and chiral symmetry

Overlap between pion w.f. and nucleus $\rightarrow \pi$ works as a probe

at $\rho_e \sim 0.6 \rho_0$

Theory

 π -nucleus interaction is modified by wavefunction renormalization of medium effect as in

In-medium Glashow-Weinberg relation

$$\frac{\langle \bar{q}q \rangle^*}{\langle \bar{q}q \rangle} \simeq \left(\frac{b_1^{\mathbf{v}}}{b_1^*}\right)^{1/2} \left(1-\gamma\right)^*$$

 $\gamma = 0.184 \pm 0.003$

Jido, Hatsuda, Kunihiro, PLB670, 109 (2008)

Spectroscopy of pionic atoms in (*d*,³He) reactions

Excitation energy

Overlap between pion w.f. and nucleus

→ π works as a probe at $\rho_e \sim 0.6 \rho_0$

Theory

π-nucleus interaction is modified
by wavefunction renormalization
of medium effect as in

In-medium Glashow-Weinberg relation

$$\frac{\langle \bar{q}q \rangle^*}{\langle \bar{q}q \rangle} \simeq \left(\frac{b_1^{\rm v}}{b_1^*}\right)^{1/2} \left(1-\gamma\right)^{1/2}$$

γ=0.184±0.003

Jido, Hatsuda, Kunihiro, PLB670, 109 (2008) 10

Spectroscopy of pionic atoms in (*d*,³He) reactions

Excitation energy

11

Pionic¹²¹**Sn** atom

T. Nishi KI et al., PRL120, 152505 (2018)

Pionic¹²¹**Sn** atom

[hb/(sr•MeV)] Щ d²σ/(dΩ •

Pionic¹²¹**Sn** atom

Binding energies and widths were determined with unprecedented accuracy

	$[\mathrm{keV}]$	Statistical	Systematic
$B_{\pi}(1s)$	3831	± 3	+78 - 76
$B_{\pi}(2p)$	2276	± 3	+84 - 83
$B_{\pi}(1s) - B_{\pi}(2p)$	1555	± 4	± 12
$\Gamma_{\pi}(1s)$	316	± 12	+36 - 39
$\Gamma_{\pi}(2p)$	164	± 17	+41 - 32
$\Gamma_{\pi}(1s) - \Gamma_{\pi}(2p)$	152	± 20	+28 - 36

Deduction of pion-nucleus interaction Production experiment

	$[\mathrm{keV}]$	Statistical	Systematic
$B_{\pi}(1s)$	3831	± 3	+78 - 76
$B_{\pi}(2p)$	2276	± 3	+84 - 83
$B_{\pi}(1s) - B_{\pi}(2p)$	1555	± 4	± 12
$\Gamma_{\pi}(1s)$	316	± 12	+36 - 39
$\Gamma_{\pi}(2p)$	164	± 17	+41 - 32
$\Gamma_{\pi}(1s) - \Gamma_{\pi}(2p)$	152	± 20	+28 - 36

Deduction of pion-nucleus interaction Production experiment

 $b_1 [m_{\pi}^{-1}]$

$b_1 = -0.1163 \pm 0.0056$

	$[\mathrm{keV}]$	Statistical	Systematic
$B_{\pi}(1s)$	3831	± 3	+78 - 76
$B_{\pi}(2p)$	2276	± 3	+84 - 83
$B_{\pi}(1s) - B_{\pi}(2p)$	1555	± 4	± 12
$\Gamma_{\pi}(1s)$	316	± 12	+36 - 39
$\Gamma_{\pi}(2p)$	164	± 17	+41 - 32
$\Gamma_{\pi}(1s) - \Gamma_{\pi}(2p)$	152	± 20	+28 - 36

Article

17

Article

- The experimental result shows good

η'-mesic nuclei

η′

PS meson masses distribute in 140 - 960 MeV/*c*²

n' has peculiarly large mass

21

$U_A(1)$ symmetry breaking term of effective Lagrangian

Kobayashi-Maskawa-'t Hooft interaction

Kobayashi, Maskawa, PTP44(70)1422 't Hooft, PRD14(76)3432. T. Kunihiro, Phys. Lett. B219(89)363. Klimt, Lutz, Vogl, Weise, NPA516(90)429.

η' = axial U(1) anomaly × chiral condensate

Hirenzaki

Reduction of <qq> leads to considerably large η' mass drop → Attractive potential → Existence of bound states

η' mesic nuclei search experiment in (*p,d*) reaction

Missing mass spectroscopy of $(p,d) = \eta'$ transfer + neutron pickup reaction

Theoretical spectra of (*p,d*) reaction

η' mesic nuclei search in semi-exclusive measurement of ¹²**C**(*p,dp*) reaction (GSI-S490, 2022) ^{3 major decay modes of}

FRS S2-S2: forward spectrometer with ~ 2.5 MeV energy resolution

FRS+WASA for ¹²C(*p*,*dp*) reaction

Cooperation with COSY-WASA collaboration

S490 Spokesperson: KI co-Spokesperson: Y.K. Tanaka

FRS+WASA for ¹²C(*p*,*dp*) reaction $\eta'NN \rightarrow NN$ tagging in WASA

Cooperation with COSY-WASA collaboration

/**beta**/

0.5

- MDC (Mini Drift Chamber) Charged particle tracking
- PSB (Plastic Scintillator Barrel) ΔE + Timing measurement
- Csl y detection for calibration

FRS+WASA for ¹²C(*p*,*dp*) reaction $n'NN \rightarrow NN$ tagging in WASA

Cooperation with COSY-WASA collaboration

/beta

0.5

- MDC (Mini Drift Chamber) Charged particle tracking
- PSB (Plastic Scintillator Barrel) ΔE + Timing measurement
- Csl y detection for calibration

FRS+WASA for ${}^{12}C(p,dp)$ **reaction** $n'NN \rightarrow NN$ tagging in WASA

γ detection for calibration

29

- Spectroscopy of meson-nucleus bound states is a strong tool to study symmetries of vacuum
- **\eta'-mesic nuclei** may give some hints of U_A(1) quantum anomaly.
- We make use of ${}^{12}C(p,d)$ missing-mass measurement in coincidence with $\eta'NN \rightarrow NN$ tagging.
- WASA at GSI/FRS worked as designed. Background is reduced by 1/200 as simulated and we are finalizing the analysis.
- For **pionic atoms**, we make use of Sn(d,³He) missing-mass measurement.
- The binding energies and widths of the 1s and 2p states in ¹²¹Sn were determined. Difference between the 1s and 2p values reduces the systematic errors drastically.
- We deduced pion-nucleus interaction after including recent updates. The interaction is modified for the w.f. renomalization of the medium effect.
- Chiral condensate is evaluated at $\rho_e \sim 0.6\rho_0$ and is reduced by a factor of 77±2%
- We continue study for ρ dependence of <qbar q>. We plan measurement with "inverse kinematics" for better resolution, leading to future experiments of pionic unstable nuclei.

Summary