

 $J/\psi, Y$

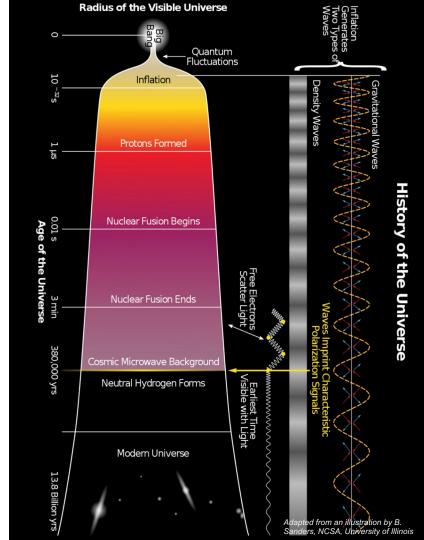
D

Studying proton mass structure with the Hall C J/ψ-007 Experiment and beyond

Sylvester Joosten

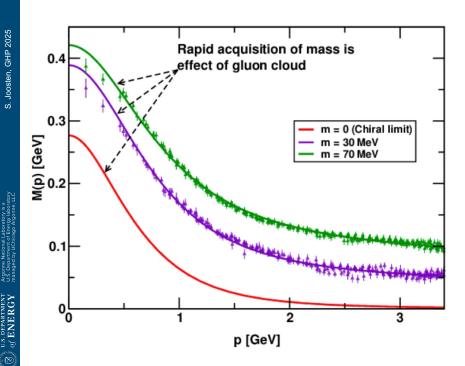
On Behalf of the J/ ψ-007 Collaboration With thanks to Xiangdong Ji, Dimitra Pefkou and Zein-Eddine Meziani

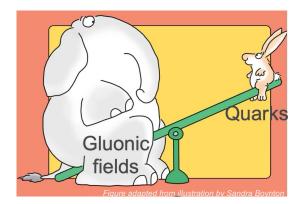
APS GHP Meeting March 15, 2025, Anaheim CA


UU

J.S. DEPARTMENT This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, tract DE-AC02-06CH11357

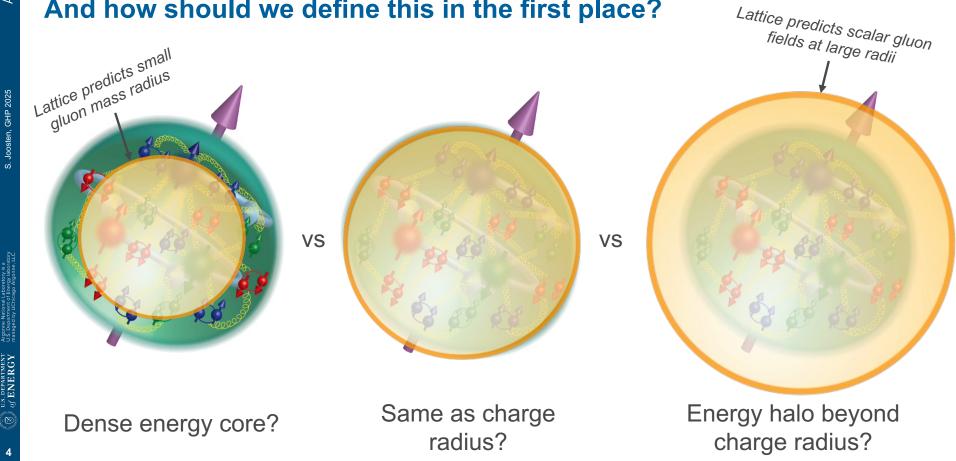
QCD in the Standard Model The emergence of nucleon mass


- Since the formation of protons and neutrons, most of the mass of the visible universe encapsulated in protons, neutrons, and nuclei.
- Surprising: nucleon mass much larger than sum of quark masses.
- How does QCD give rise to the 1GeV proton?
- How is the proton mass distributed in its confinement size?


Argonne Nat U.S. Departn managed by

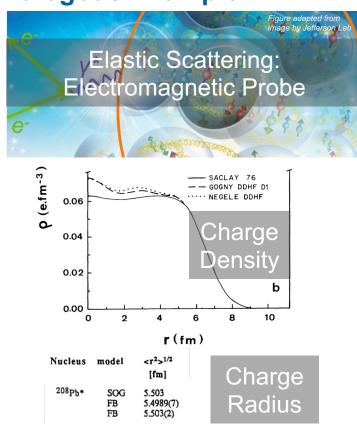
O OF ENERGY

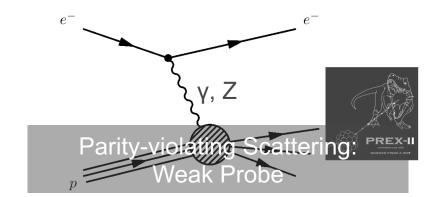
Proton Mass is an Emergent Phenomenon QCD responsible for the proton mass

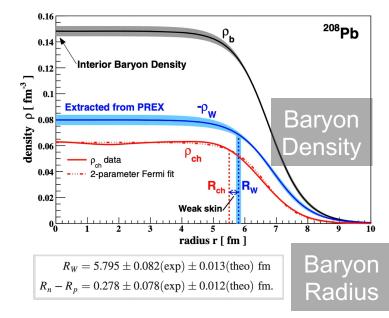

M. S. Bhagwat et al., Phys. Rev. C 68, 015203 (2003) I. C. Cloet et al., Prog. Part. Nucl. Phys. 77, 1-69 (2014) Most of the proton mass originates in the energy enclosed in the gluonic fields of the Strong Interaction itself

Bottom line: The Higgs mechanism is largely irrelevant for most of "normal" visible matter!

S. Joosten, GHP 2025

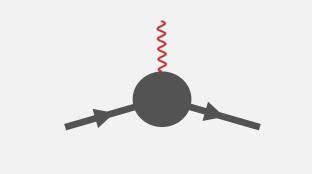

What Is the Size of a Proton? And how should we define this in the first place?




How to measure the spatial structure of nucleons and nuclei?

What Is the Size of ²⁰⁸Pb? Analogous Example

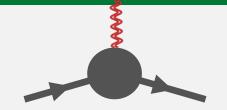
VS


B. Frois, et al. Phys. Rev. Lett. 38, 576 (1977)

H. De Vries, et al. Atomic Data and Nuclear Data Tables 36, 495 (1987)

O OF ENERGY

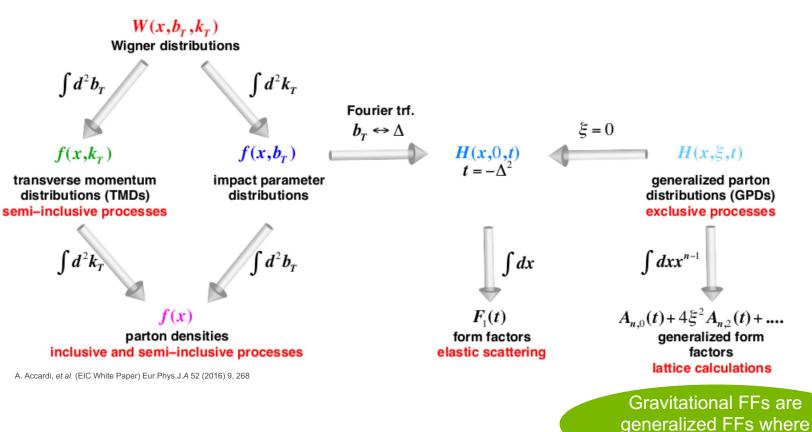
Gravitational Form Factors (GFFs)


Electromagnetic FFs

$$\langle N' \mid J^{\mu} \mid N \rangle = \overline{u}(N') \left(F_1(Q^2) \gamma^{\mu} + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M} F_2(Q^2) \right) u(N)$$

- EM FFs are the matrix elements of the electromagnetic current operator
- Map the charge and magnetization distribution in the proton

Gravitational FFs



$$N' | T_{q,g}^{\mu,\nu} | N \rangle$$

= $\overline{u}(N') \left(A_{g,q}(t) \gamma^{\{\mu P\nu\}} + B_{g,q}(t) \frac{i P^{\{\mu} \sigma^{\nu\}} \rho \Delta_{\rho}}{2M} + C_{g,q}(t) \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^{2}}{M} + \overline{C}_{g,q}(t) M g^{\mu\nu} \right) u(N)$

- GFFs are the matrix elements of the QCD energy-momentum tensor (EMT) for quarks and gluons
- Reveal the distribution of mechanical properties of quarks and gluons in the proton, e.g. mass and internal pressure distributions

OF ENERGY

Unified View of Nucleon Structure and GFFs

n = 2 (second moment)

Argonne U.S. Depe managed

Of ENERGY

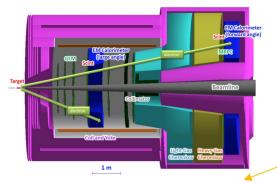
How To Measure the Gluon GFFs? Gluons are elusive!

r

Cannot use Electromagnetic probe: primarily couples to quarks Small "color" dipole made of heavy quarks well-suited

Use quarkonium photoproduction as stand-in for elastic quarkonium scattering

Gravitational form factors constrained by near-threshold exclusive J/ψ and Y photoproduction


Beyond GFFs: 3-D gluonic structure of nucleons and nuclei constrained by exclusive J/ ψ and Y

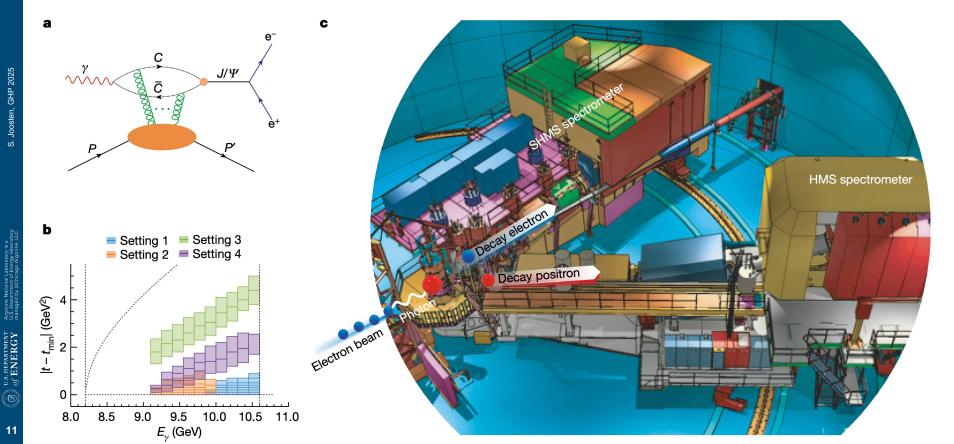
OF ENERGY

12 GeV J/ψ Experiments at Jefferson Lab

Hall D - GlueX observer the first J/ψ at JLab A. Ali *et al.*, PRL 123, 072001 (2019)

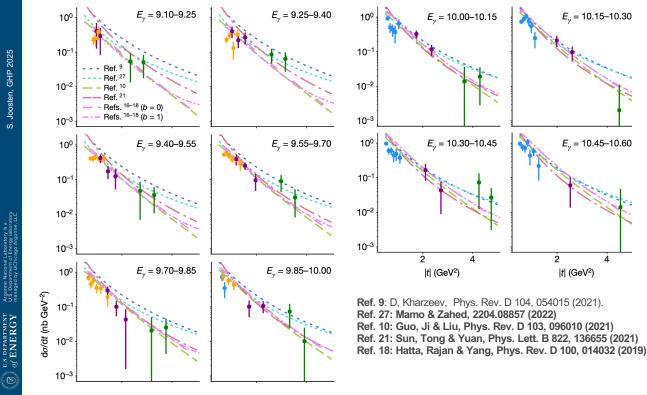
Hall A has experiment E12-12-006 at SoLID to measure J/ ψ in electro- and photoproduction, and an LOI to measure double polarization using SBS

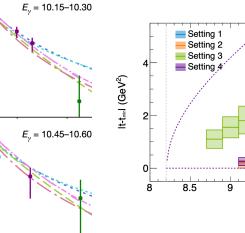
Hall C has the J/ψ-007 experiment (E12-16-007) LHCb hidden-charm pentaquark search



Hall B - CLAS12 has experiments to measure TCS + J/ψ in photoproduction as part of Run Groups A (hydrogen) and B (deuterium): E12-12-001, E12-12-001A, E12-11-003B

10


© of ENERGY


J/ψ-007 (E12-16-007) in Hall C at JLab Near-threshold J/ψ photoproduction

B. Duran et al., Nature volume 615, pages 813-816 (2023)

2-D J/ψ cross sections near threshold First results published in Nature in 2023

2

|t| (GeV2)

9.5 10 10.5 11 E, (GeV)

Unfolded 2D cross section results compared to various model predictions informed by the 2019 1D GlueX results

All models work reasonably well at higher energies but deviate at lower energies

4% scale uncertainty

Argonne

GHP

Model Assumptions and Caveats 007^{1/4} First model-dependent attempt to determine the GFFs from experiment

Assumptions

Neglect B(t) - in concordance with both models and lattice QCD

Neglect \overline{C}_g when evaluating the cross section and radii (*)

Assume tripole shape for A(t) and C(t) (**)

Fix A(0) to the average gluon PDF from CT18

Both models fit the data well ($\chi^2 \sim 1$)

(*) This is appropriate for the holographic model but not the GPD model. See Hatta et al. JHEP 12 (2018) 008 & Tanaka, K. JHEP 03 (2023) 013 for a calculation of $\overline{c}_g = -\overline{C}_q$

 $(\ensuremath{^{\ast\ast}})$ Doing the same extraction with a dipole shape, or does not impact our results

Holographic Model

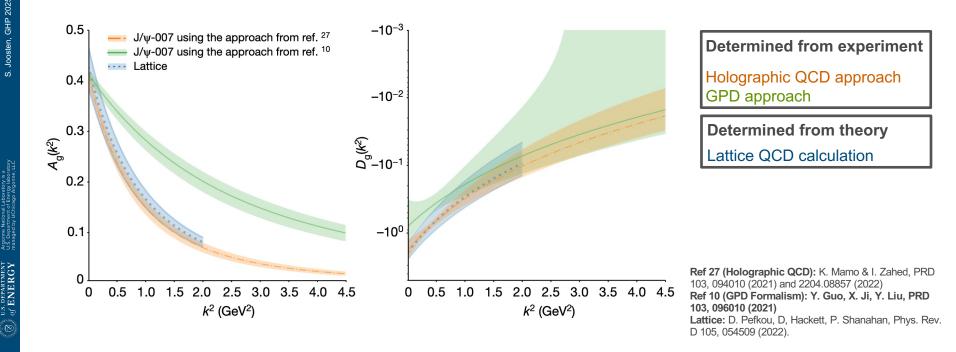
K. Mamo & I. Zahed, PRD 103, 094010 (2021) and 2204.08857 (2022)

$$\frac{d\sigma}{dt} = \mathcal{N} \times \frac{e^2}{64\pi(s - m_N^2)^2} \times \frac{A(-t,\kappa_T) + \eta^2 D(-t,\kappa_T,\kappa_S)]^2}{A^2(0)} \times \tilde{F(s)} \times 8$$

N is normalized to the previous World Data (not given by the model)

GPD Model

Y. Guo, X. Ji, Y. Liu, PRD 103, 096010 (2021)


$$\frac{d\sigma}{dt} = \frac{\alpha_e m e_Q^2}{4(W^2 - m_N^2)^2} \frac{(16\pi\alpha_s)^2}{3M_V^2} |\psi_{NR}|^2 |G(t,\xi)|^2$$

Assume $\xi \sim 1$ (it is less than 0.5 for most of the experimental data)

Argonne -

O of ENERGY

First Gluonic GFFs from Experimental Data 007^{TA} Remarkable agreement between GFFs determined from data using the Holographic QCD approach and the direct Lattice QCD calculation!

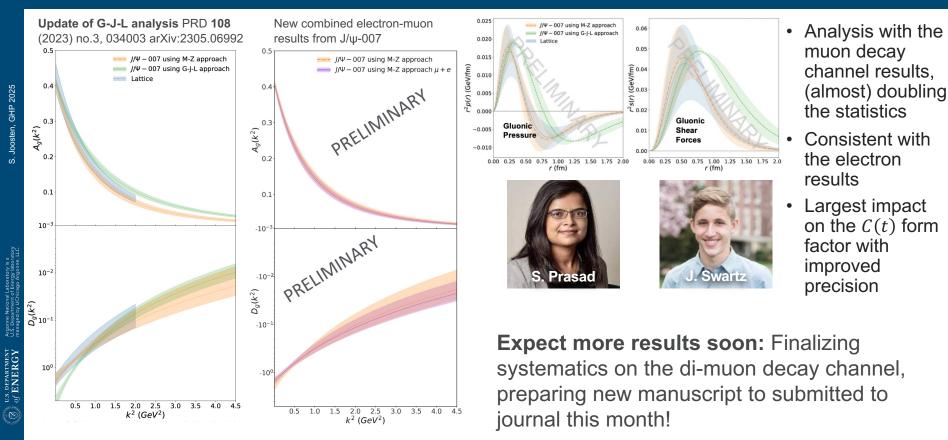
B. Duran et al., Nature volume 615, pages 813-816 (2023)

The Proton in Three Regions?

Table 1 | The gluonic GFF fit parameters, proton mass radius and scalar radius

Theoretical approach	χ²/n.d.f.	m _A (GeV)	m _c (GeV)	C _g (0)	$\sqrt{\langle r_m^2 \rangle}_g$ (fm)	$\sqrt{\langle r_s^2 \rangle}_g$ (fm)
Holographic QCD	0.925	1.575±0.059	1.12±0.21	-0.45±0.132	0.755±0.035	1.069±0.056
GPD	0.924	2.71±0.19	1.28±0.5	-0.20±0.11	0.472±0.042	0.695±0.071
Lattice		1.641±0.043	1.07±0.12	-0.483±0.133	0.7464±0.025	1.073±0.066

The proton's mass radius seems substantially smaller than its charge radius.

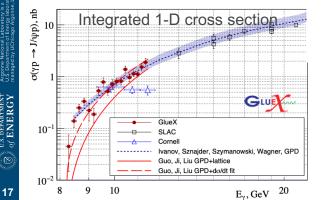

The holographic QCD fit to our data and the latest Lattice calculations find a scalar gluonic cloud surrounding the charge region at about 1 fermi

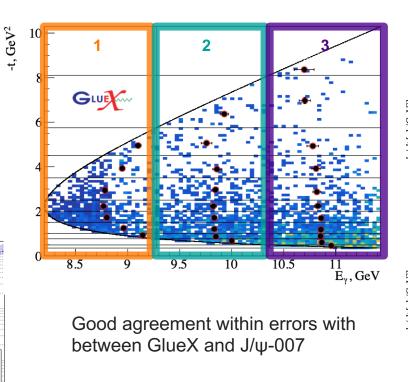
ten, GHP 2025

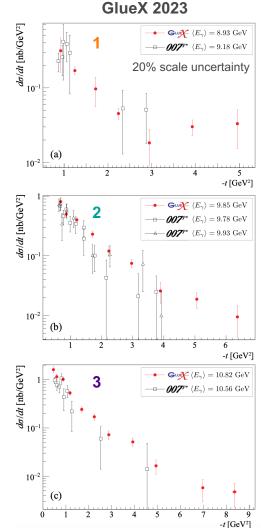
Argonne

12 GeV J/ψ Experiments at Jefferson Lab 007^{J/ψ}

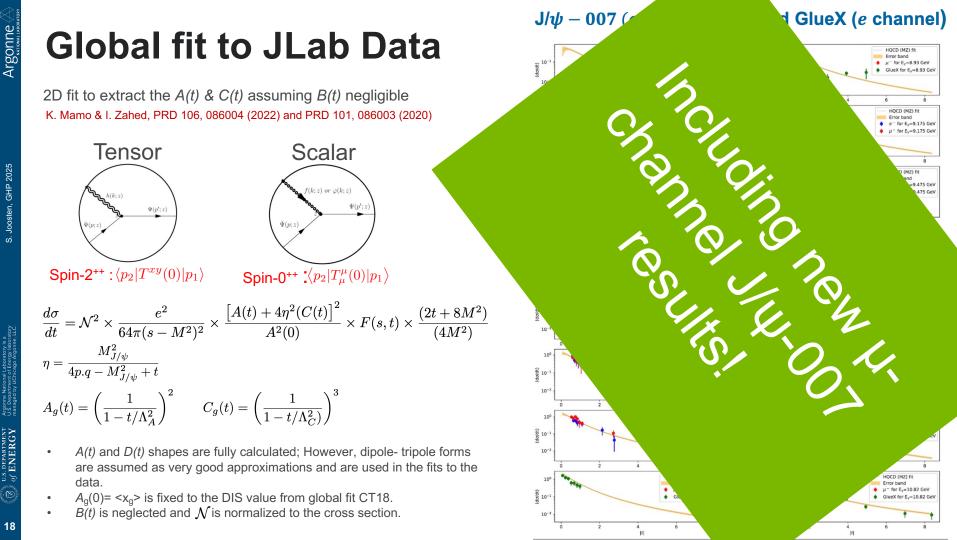
Argonne

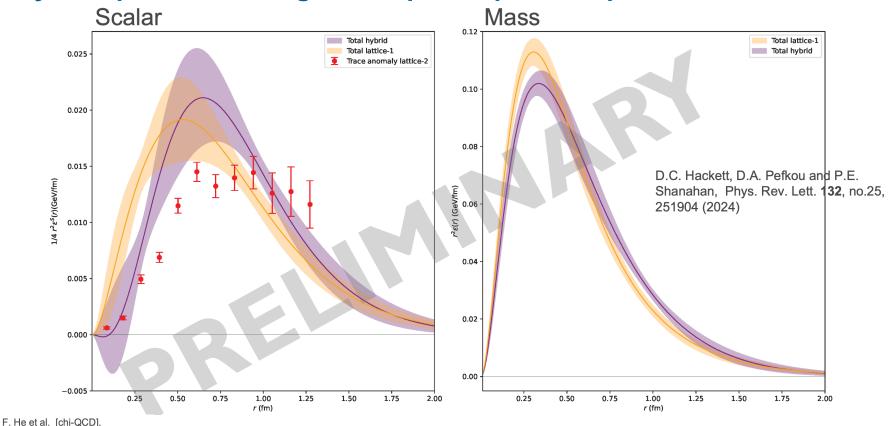

S.Adhikari et al. (GlueX), Phys. Rev. C 108, 025201


GLUE **2023 Gluex Results** 2.2k J/ ψ (~ same as J/ ψ -007 e+e- results)


2-D differential cross section extracted in $3 E_{y}$ slices E_v ~ 8.2 - 11.44 GeV

(compared to $10 E_V$ slices *E_v* ~ 9.1 - 10.6 GeV for J/ψ -007)


New GlueX results have 20% scale uncertainty.



Argonne

Breit-frame Scalar and Mass Densities

Hybrid quark-lattice + gluon-expt compared to pure lattice

(C) U.S. DEPARTMENT of ENERGY

Argonne I U.S. Depa managed

19

Rev. D 104 (2021) no.7, 074507

Ji, Meziani, Joosten, Pefkou, analysis to be submitted

Extraction of Gluon Scalar/Mass Radius of the Nucleon A Picture of Three Zones?

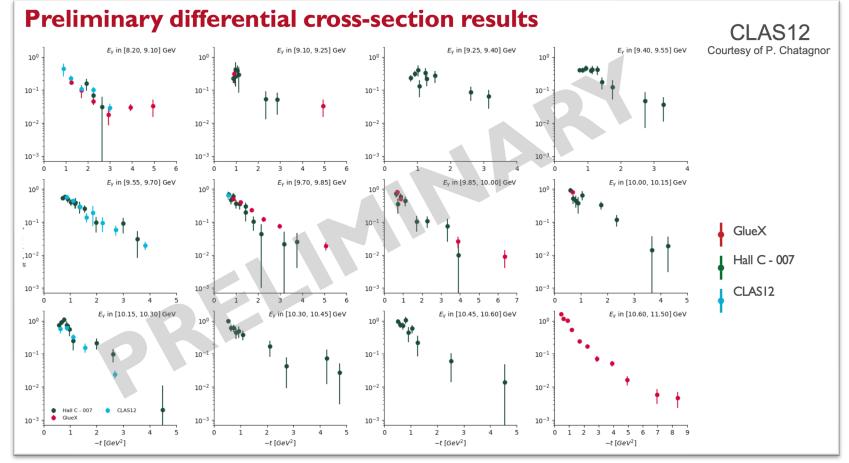
Mass Radi $\langle r_m^2 \rangle_g = \frac{6}{A_g}$				$\frac{(0)}{N^{2}}$	Scaler I $\langle r_s^2 \rangle_g =$	$\frac{Adius}{\frac{6}{A_g(0)}\frac{dA_g}{dt}}$		$\frac{18}{A_g(0)} \frac{C_g(0)}{M_N^2}$
Theoretical approach Data Set # GFF functional form	χ^2 /n.d.f	$m_A (\text{GeV})$	$m_{\mathcal{C}}$ (GeV)	$C_g(0)$	$\sqrt{\left\langle r_{m}^{2} ight angle _{g}}$ (fm)	$\sqrt{\langle r_s^2 \rangle}_g$ (fm)	$\sqrt{\langle r_s^2 \rangle}_T$ (fm)	
Data set # 1 Dipole-tripole	1.21	1.153±0.018	0.967 ±0.099	-0.436±0.079	0.794 ± 0.037	1.091 ±0.074	0.999±0.036	
Data set # 2 Dipole-tripole	1.08	1.158±0.013	0.895 ±0.063	-0.530±0.079	0.830 ± 0.033	1.170 ±0.067	0.984±0.052	Saluractoud
Lattice (2024) $m_{\pi} = 170 \text{ MeV}$ Dipole-tripole		1.262± 0.018	0.845± 0.017	-0.452± 0.080	0.727 ± 0.041	0.998 ± 0.086	0.897±0.060	
Data set # 1 Dipole-dipole	1.15	1.212 ± 0.028	0.828 ±0.106	-0.435±0.073	0.771±0.038	1.070±0.071	0.984±0.052	The second secon
Data set # 2 Dipole-dipole	1.07	1.195 ±0.028	0.828 ±0.106	-0.435±0.073	0.825±0.038	1.178±0.075	0.999±0.067	
Lattice (2024) $m_{\pi} = 170 \text{ MeV}$ Dipole-dipole		1.262± 0.017	0.706± 0.066	-0.552± 0.089	0.796±0.069	1.15± 0.14	1.008± 0.094	

20

U.S. DEPARTMENT Argome National Lat Of ENERGY U.S. Department of El

Courtesy of P. Chatagnon

9.5 10.0 F. Ictore

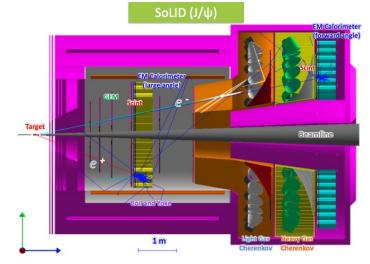

Upcoming Results: CLAS12

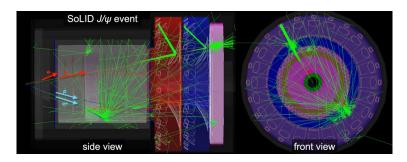
The CLASI2 detector package **Forward Detector** Torus magnet **Central Detector** Drift Chambers Solenoid magnet Time-of-Flight Tracker Calorimeters Time-of-Flight Cherenkov counters Neutron detector 0 ForwardTagger Beam Calorimeter 85% longitudinally polarized e Time-of fight Max. luminosity: 1035 s-1 cm-2 Tracker Energy up to ~10.6 GeV CLAS12 Hall C - 007 GlueX Target Constant E line e^{\neg} Limit of the phase space Proton Deuterium Longitudinally pol.H/D Nuclear targets Extraction of the cross-section of the near-threshold photoproduction of J/ψ with the CLASI2 experiment - Pierre Chatagnon - 10th of July 2024 - QNP2024

Argonne National Laboratory is a U.S. Department of Energy laboratory

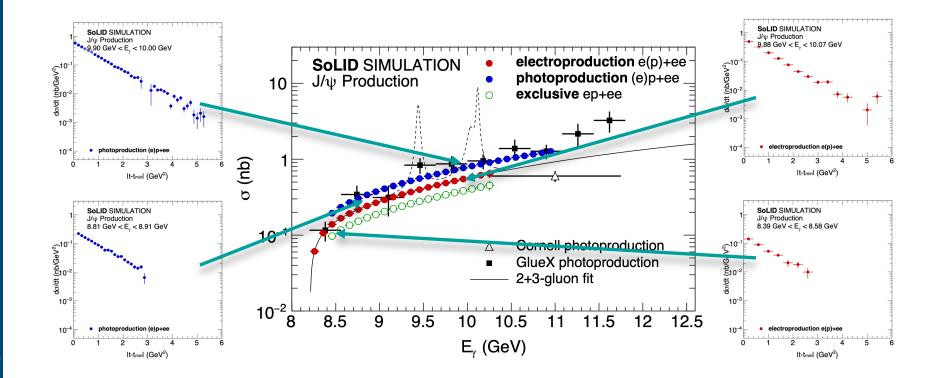
Upcoming Results: CLAS12

From QNP2024

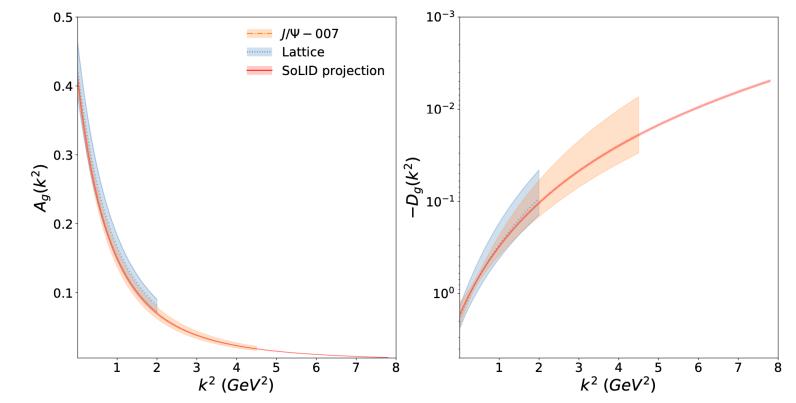



Argonne

Future: SoLID-J/ψ in Hall A Ultimate factory for near-threshold J/ψ


- Joosten, GHP 2025
- General purpose large-acceptance spectrometer
- 50+10 days of 3µA beam on a 15cm long LH2 target (10³⁷/cm²/s)
- Ultra-high luminosity: 43.2ab⁻¹
- Open 2-particle trigger, covering J/ψ production in four channels: Electroproduction (e,e⁻e⁺), photoproduction (p,e⁻e⁺), inclusive (e⁻e⁺), exclusive (ep,e⁻e⁺)
- The electoproduction channel provides for a modest lever-arm in Q² near threshold

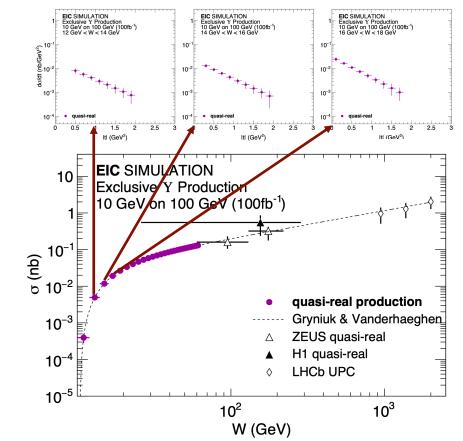
O of ENERGY


Future: SoLID-J/ψ in Hall A High-precision 2-D cross section crucial to really connect GFFs to data

GHP

of ENERGY

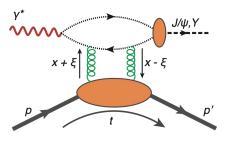
Future: SoLID Projected Impact on gluon GFFs Comparison with J/ψ-007 (Holographic QCD approach) and Lattice



B.Duran, et al., proton, Nature 615, no.7954, 813-816 (2023)
K. A. Mamo and I. Zahed, *Phys. Rev. D* 106, no.8, 086004 (2022)
D. A. Pefkou, D. C. Hackett and P. E. Shanahan, *Phys. Rev. D* 105 (2022) no.5, 054509

O OF ENERGY

Future: Y(1s) Near Threshold Near-threshold quarkonium at EIC


- Y(1S) at EIC trades statistical precision of J/ψ at SoLID for lower theoretical uncertainties and extra channel to study universality.
- Large Q² reach at EIC an additional knob to study production

S. Joosten, Z.-E. Meziani, PoS QCDEV2017 017 (2018) O. Grynyuk, S. Joosten, Z.-E. Meziani, M. Vanderhaeghen PRD 102, 014016 (2020)

Argonne

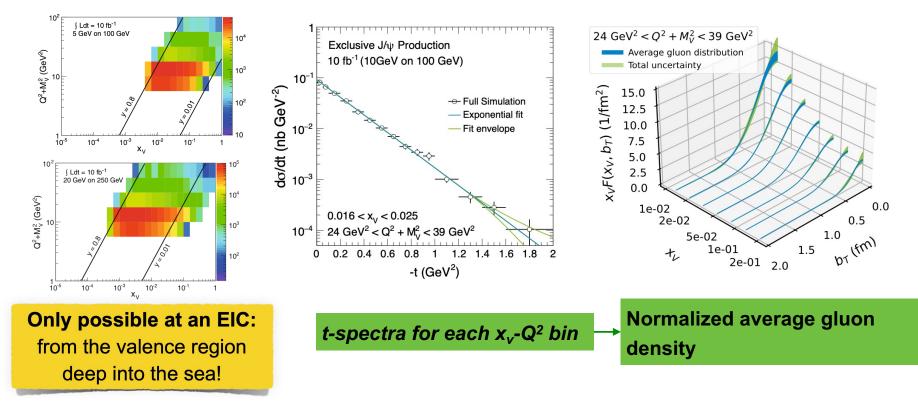
Future: Deeply-Virtual Quarkonium Production Accessing the 3-D gluon structure

Hard scale:
$$Q^2 + M_V^2$$

Modified Bjorken-*x*: $x_V = \frac{Q^2 + M_V^2}{2p \cdot q}$

average unpolarized gluon GPD related to *t*-dependent cross section (LO)

$$|\langle \mathcal{H}_g \rangle|(t) \propto \sqrt{\frac{d\sigma}{dt}(t)} / \frac{d\sigma}{dt}(t=0)$$


Fourier transform: 3-D transverse gluonic density

$$\rho(|\vec{b}_T|, x_V) = \int \frac{d^2 \vec{\Delta}_T}{(2\pi)^2} e^{i \vec{\Delta}_T \vec{b}_T} |\langle H_g \rangle| (t = -\vec{\Delta}_T^2)$$

3-D GPDs can be related to 2-D Gravitational Form Factors

Joosten, GHP 2025

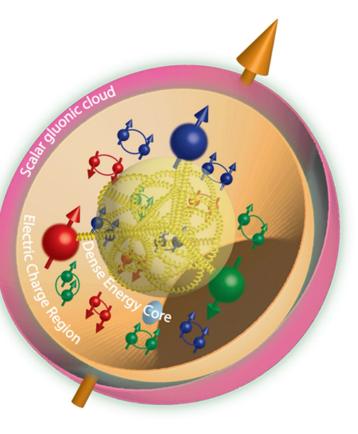
Future: Gluon Tomography at EIC An Example

Eur.Phys.J.A 52 (2016) 9, 268 JINST 17 (2022) 10, P10019

Argonne I U.S. Depa managed

This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

Conclusion


The JLab 12-GeV program has delivered important first results on near-threshold J/ ψ production from GlueX and Hall C (J/ ψ -007)

- A new window on the gluonic structure of the proton
- The proton appears to have a dense energy core
- What are the implications of a possible scalar gluonic cloud? Does the proton have a scalar gluon "skin"?

The planned near-threshold J/ψ production program at Jefferson Lab is crucial to further our understanding of the origin of mass.

 SoLID can reach J/ψ observables that cannot be achieved anywhere else, including precision measurements at high t and precision electroproduction near threshold.

The mass structure of the nucleons and nuclei is a rapidly evolving topic, reaching from Jefferson Lab to the EIC

