Experimental outlook on exploring color transparency phenomena

Holly Szumila-Vance Florida International University

15 March 2025 11th workshop of the APS topical Group on Hadronic Physics Anaheim, CA

FLORIDA

From quarks to nuclei?

More than just constituent particles

Quark masses account for <1% of the

Quantum Chromodynamics (QCD) governs the strong force between quarks and gluons

Consequences of QCD

Properties of nucleons and nuclei emerge from this complex system of *interacting* quarks and gluons

+2/3 (up-(down-quark) quark) +2/3 (upquark)

 $|p\rangle = |uud\rangle + |uudq\bar{q}\rangle + |uudg\rangle + \dots$

Two-component proton model

Frankfurt, Strikman, Miller

No interaction Interacts with nucleus with nucleus

$$H = \begin{bmatrix} E_B - |U_{(n,p)}| & V \\ V & E_P \end{bmatrix}$$

Different size configurations

Small-Size configurations interact less: \rightarrow Color transparency

Point-like configurations in nuclei

 $|p\rangle = |uud\rangle + |uudq\bar{q}\rangle + |uudg\rangle + \dots$

- Point-like configurations have a higher probability that any single quark carries a higher momentum fraction of the nucleon
- 2) Point-like configurations interact less \rightarrow Less bound
 - \rightarrow Less probable!

→ Fewer high momentum quarks!
 (Bound proton modification? Think EMC Effect....)

Hadron propagation through matter is fundamental to the many body problem

Medium modification of quark distributions

Hard processes probe QCD confinement:

(EMC Effect)

Short range structure (NN short-range correlations)

Creation and evolution of small-size hadrons

3D mapping (nuclear GPDs and TMDs)

 $|p\rangle = |uud\rangle + |uudq\bar{q}\rangle + |uudg\rangle + ...$

Quantum mechanics: Shorter wavelength photons are absorbed on smaller-size hadrons (*squeezing*, transferred momentum)

 $|p\rangle = |uud\rangle + |uudq\bar{q}\rangle + |uudg\rangle + ...$

Quantum mechanics: Shorter wavelength photons are absorbed on smaller-size hadrons (*squeezing*, transferred momentum)

Relativity: Time dilation slows proton expansion (*freezing*, transferred energy)

 $|p\rangle = |uud\rangle + |uudq\bar{q}\rangle + |uudg\rangle + ...$

Quantum mechanics: Shorter wavelength photons are absorbed on smaller-size hadrons (*squeezing*, transferred momentum)

Relativity: Time dilation slows proton expansion (*freezing*, transferred energy)

Strong force: Smaller protons interact less, color screened $\sigma_{PLC} \approx \sigma_{hN} \frac{b^2}{R_h^2}$

Introduced by Mueller and Brodsky, 1982

 $|p\rangle = |uud\rangle + |uudq\bar{q}\rangle + |uudg\rangle + ...$

Quantum mechanics: Shorter wavelength photons are absorbed on smaller-size hadrons (*squeezing*, transferred momentum)

Relativity: Time dilation slows proton expansion (*freezing*, transferred energy)

Strong force: Smaller protons interact less, color screened

Proton transmission should increase with momentum transfer, Q^2

Measuring transparency

Hit a proton hard.

Transparency (proton transmission) is the probability that the struck proton emerges from the nucleus without significant re-interaction.

$$T_A = \frac{\sigma_A}{Z \sigma_p} \begin{array}{c} \text{(nuclear cross section)} \\ \text{(free proton} \\ \text{cross section)} \end{array}$$

Z: atomic number

CT predicts momentum dependence of the transparency

Onset of CT indicates where quark-gluon degrees of freedom become relevant

FNAL E791

CT at high energies

 $|\pi^{-}\rangle = |d\overline{u}\rangle + |d\overline{u}g\rangle + |d\overline{u}gg\rangle + \dots$

Coherent diffractive dissociation of 500 GeV/*c* pions on C and Pt

Fit to $\sigma = \sigma_0 A^{\alpha}$ Pion-nucleus total cross section, α =1.6

CT predictions by L. L. Frankfurt, G. A. Miller, and M. Strikman, Phys. Lett. B304, 1 (1993)

Aitala et al., PRL 86, 4773 (2001)

First indirect evidence of CT: Bjorken scaling at small x

Small x ($\leq 10^{-2}$) \rightarrow long longitudinal distances Virtual photon fluctuates into a $q\bar{q}$ pair

Scaling shows no evidence of this interaction

Bjorken, SLAC-PUB-1756 Frankfurt and Strikman, Phys Rep 160, 235 (1988) 15

CT (onset) experiments

CT onset for mesons observed at a few GeV²

Extend measurements in the rho-meson

Rho transparency measurements will be extended to highest Q² in Hall B Experiment completed running Dec 2023

CT onset for mesons observed at a few GeV²

$$|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$$

B. Clasie et al, PRL99:242502 (2007) X. Qian et al, PRC81:055209 (2010)

Future: Extend pion CT measurements (2026)

Proton CT observed?

J. L. S. Aclander et al., PRC 70 (2004)

Transparency in A(p,2p) experiment at Brookhaven:

- observed enhancement
- inconsistent with CT only
- could be explained by nuclear filtering¹ or charm resonance²

A(e,e'p) tells another story...

A(e,e'p) tells another story...

No CT in the shell-dependent transparencies for ¹²C

CT predicted to be more prominent for

1s_{1/2} protons Frankfurt, Nuclear Physics A515 (1990)

In terms of shell-model orbitals:

- p-shell protons are surface peaked (4)
- s-shell protons are more in the interior of carbon (2)

No CT in the shell-dependent transparencies

D. Bhetuwal, et al, Phys. Rev. C 108, 025203 (2023)

(Some) interpretations

Squeezing didn't work – Feynman Mechanism dominates!

O. Caplow-Munro and G. Miller, PRC 104 (2021)

Need better kinematics?

Knocking out protons along the \vec{q} \rightarrow Looking where rescattering is small \rightarrow (p,2p) accessed larger transverse momenta

S. Li, et al, MDPI Physics 2022

Why observed in mesons and not baryons?

Is there a reaction dependence?

Future experiment: Enhance the CT signal Proton knockout in rescattering kinematics

All previous (e,e'p) experiments, assumptions:

- Proton cannot expand before exiting
- Small increase in transmission

NO CT

Proton rescattering

Future (e,e'p) experiment, assumptions:

- Proton cannot expand before rescattering
- Large decrease in rescattering

Future experiment: Enhance the CT signal in rescattering kinematics

Deuterium is well-described through Generalized Eikonal Approximation (GEA)

Rescattering concentrated in small region

K. S. Egiyan et al., PRL 98:262502 (2007)

W. Boeglin, M. Sargsian PLB 854 (2024) ³⁰

CT: Measure protons from re-scattering, look for decrease with *Q*² (2027)

CT: Measure protons from re-scattering, look for decrease with Q² (2027)

Farrar et al., PRL (1988)

First experiment where expansion can be disentangled from PLC observation

Reaction mechanism dependent? Photoproduction!

 $\gamma n \rightarrow \pi^{-} p$ in ⁴He in Hall A (6 GeV era)

Other reaction mechanisms: photoproduction!

Experiment ran in 2021 on ⁴He, ¹²C and deuterium

CT from photoproduction reaction in Hall D

Summary

$|p\rangle = |uud\rangle + |uudq\bar{q}\rangle + |uudg\rangle + \dots$

- PLC part of proton description
- CT: Smaller sizes \rightarrow reduced interactions!

- Observation of CT directly (finding regime to effectively turn off strong interactions) connects q-g and hadronic degrees of freedom.
- New CT experiments explore the connections between the baryonic and mesonic sectors and reaction mechanisms.

Future: Extend pion CT measurements (2026) 〜

