Quantum algorithms for high energy evolution

Shaswat Tiwari

North Carolina State University

Work with: A. A. Agrawal, E. Budd, A. F. Kemper, A. Tarasov, V. V. Skokov

SURGE COLLABORATION

DOE grant number DE-SC0020081

Motivation

- JIMWLK equation: small-x observables, saturation
- LL JIMWLK \rightarrow Langevin formulation
- Computationally expensive process
- NLL JIMWLK lacks a Langevin formulation
- Not all observables can be studied

Need a new method to simulate JIMWLK

J.P.Blaizot, E.Iancu, H.Weigert K.Rummukainen and H.Weigert

Quantum algorithms for JIMWLK

 ${\bf Aim:} \ {\rm Develop} \ {\rm quantum} \ {\rm algorithms} \ {\rm for} \ {\rm JIMWLK} \ {\rm evolution}$

- JIMWLK evolution for density matrices \leftrightarrow Lindblad evolution
- Lindblad evolution in open quantum systems: Widely simulated
- NLL JIMWLK can be simulated in principle

N.Armesto, F.Domniniguez, A.Kovner, M.Lublinsky, V.Skokov (2019) M.Li, A. Kovner (2020) Distribution of color charges:

 $\mathbf{W}_{\mathbf{Y}}[\mathbf{j}]$

Color charge configuration **j**

What is JIMWLK?

Evolution of target color charge density $W_Y[j]$ with rapidity Y

Scattering of a projectile:

 $\langle S \rangle_Y = \sum_j S(j) W_Y[j]$

Rapidity Evolution:

 $\partial_Y W_Y[j] = H_{JIMWLK} W_Y[j]$

Evolution due to quantum effects

4

Usual method: Langevin Evolution

• Evolve the projectile instead:

$$\partial_Y \langle S \rangle_Y = \langle H_{JIMWLK} S \rangle_Y$$

- Written as a Langevin equation
- Evolution as a random walk:

$$S_Y \to S_{Y+\delta Y}(\xi)$$

• Average over gaussian random variables ξ ,

$$S_{Y+\delta Y} = \langle S_{Y+\delta Y}(\xi) \rangle_{\xi}$$

J.P.Blaizot, E.Iancu, H.Weigert K.Rummukainen and H.Weigert

Problems with the approach

- Needs to be iterated: Computationally expensive
- Averaging gives rise to statistical errors
- No langevin formulation for NLO JIMWLK
- Cannot compute off-diagonal observables

Solution: Look at Lindblad-JIMWLK correspondence

Hamiltonian evolution

$$\partial_t \rho_U(t) = -[H, \rho_U]$$

Lindbladian Evolution

$$\partial_t \rho_A(t) = -[H, \rho_A] + \sum_{\alpha} Q_{\alpha} \rho_A(t) Q_{\alpha}^{\dagger} - \frac{1}{2} \{ Q_{\alpha}^{\dagger} Q_{\alpha}, \rho(t) \}$$

Jump operator (Q_{α}) : Change in A states due to B

JIMWLK evolution can be written as a Lindblad equation

JIMWLK as a Lindblad Evolution

Gluonic degrees of freedom

Density matrix ρ_v : Valence gluons $|j\rangle$

$$\langle j|\rho|j\rangle = W[j]$$

JIMWLK as a Lindblad equation

M. Li, A. Kovner(2020)

JIMWLK as a Lindblad equation

Careful: Only valid in dilute/dense limits

M. Li, A. Kovner(2020)

JIMWLK

$$\frac{d}{dY}\hat{\rho}_v = \int \frac{d^2 z_{\perp}}{2\pi} \Big[\hat{Q}^a[z_{\perp}], \Big[\hat{Q}^a[z_{\perp}], \hat{\rho}_v \Big] \Big]$$

- Hilbert space: Field values $|\alpha^c(x_{\perp})\rangle$ generated by $|j\rangle$
- Dilute limit jump operators:

$$Q_i^a[z_\perp] \propto \frac{\delta}{\delta \, \alpha^a(x_\perp)}$$

Functional differential equation acting on density matrices

The method summarized

Discretization I

- Position space discretization (N_p)
- Field space discretization (N_F)
- Reduced color space (N_g)

Number of states =
$$(N_F)^{N_p N_g}$$

Number of jump operators =
$$N_p N_g$$

- Two points $1_{\perp}, 2_{\perp}$: $N_p = 2$
- Two field values $-\alpha, \alpha$: $N_F = 2$
- SU(2) : $N_g = 3$

Number of states: 64 Number of jump operators: 6

Evolution in Quantum computers

$$\frac{d}{dY}\hat{\rho}_{\upsilon} = \sum_{z_{\perp}} \frac{z_{\perp}}{2\pi} \Big[\hat{Q}^{a}[z_{\perp}], \Big[\hat{Q}^{a}[z_{\perp}], \hat{\rho}_{\upsilon} \Big] \Big]$$

- Non-unitary evolution \implies No direct QC implementation
- Methods available:
 - 1. Stochastic schrodinger equation
 - 2. Effective higher dimensional hamiltonian
 - 3. Linear combination of unitaries

J.Li, X.Li(2020) Z.Ding, X.Li, L.Lin(2024) A.Schlimgen, K.Head-Marsden, L.M.Sager, P.Narang, D.A.Maziotti(2021)

Evolution in Quantum computers

Results

- $\rho_{initial}$: 64 × 64 matrix
- Pauli matrix expansion of U
- Trotterization
- Simulation using Qiskit

Need to match with Langevin JIMWLK

Z.Ding, X.Li, L.Lin (2024)

Matching with Langevin

Match with dilute Langevin JIMWLK

Match not perfect: Discretization effects!!

Truncation effect(IR)

Langevin

Lindblad

Langevin jumps outside the space near ${\bf Edge\ states}$

Coarse graining effect (UV)

Langevin

Lindblad

Langevin evolution is not sensitive to lattice spacing

Discretization effects

Two types: Coarse Gaining(UV) and Truncation(IR)

Coarse Graining effect

Truncation effect

Sensitivity to discretization of two evolutions different

• IR effects: Avoid edge states

• UV effects: Avoid localization

Maybe a change of basis?

• IR effects: Avoid edge states

• UV effects: Avoid localization

Currently looking at spin motivated basis. Will report in the future!

Summary

- Use spin motivated basis to reduce discretization effects
- Extend the analysis to more number of transverse points
- Repeat the calculation for more number of colors

Efficiently simulate 2-d JIMWLK with SU(3) on Quantum computers

Thanks for your attention!