MARCH 14TH 2025

DVCS AT CLAS12 ON LONGITUDINALLY POLARIZED PROTONS AND NEUTRONS IN DEUTERIUM

NOÉMIE PILLEUX Postdoctoral Appointee, Argonne National Laboratory The work presented today was mostly conducted at

IJCLab and Paris Saclay University

GENERALIZED PARTON DISTRIBUTIONS (GPDs)

- Generalized parton distributions: transverse position, longitudinal momentum, and their correlations.
- 3D imaging.
- Spin puzzle.
- Forces, pressures.

U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

DEEPLY VIRTUAL COMPTON SCATTERING (DVCS)

 $\begin{array}{c} e''k' \\ k \\ q, v \\ \gamma^{*} \\ \gamma^{*} \\ F \\ GPDs \\ p' \\ Q^{2} = \end{array}$

Hard scattering, perturbative.

Soft, non perturbative, parametrized by GPDs.

- Four types of GPDs, depending on the quark and nucleon helicities.
- Quark helicities can be probed with polarized electron beams.
- Nucleon spin can be controlled in polarized targets experiments.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

DVCS OBSERVABLES

- GPDs are accessed through Compton Form Factors (CFFs) in DVCS experiments.
- They are accessed in linear combinations with standard Form Factors in the interference between the DVCS and Bethe-Heitler (BH) processes.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

$$\begin{array}{c} \mathsf{p/n} \quad \Delta \sigma_{LU} \propto \sin(\phi) \Im \left[F_1 \mathcal{H} + \xi(F_1 + F_2) \tilde{\mathcal{H}} - \xi \frac{t}{4M^2} F_2 \mathcal{E} \right] \\ \hline \mathsf{p/n} \quad \Delta \sigma_{UL} \propto \sin(\phi) \Im \left[F_1 \tilde{\mathcal{H}} + \xi(F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi(\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}} \right] \\ \hline \mathsf{p/n} \quad \Delta \sigma_{LL} \propto (A + B \cos(\phi)) \Re[F_1 \tilde{\mathcal{H}} + \xi(F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi(\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}}] \\ \hline \mathsf{p/n} \quad \Delta \sigma_{LL} \propto (A + B \cos(\phi)) \Re[F_1 \tilde{\mathcal{H}} + \xi(F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi(\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}}] \\ \hline \mathsf{p/n} \quad \Delta \sigma_{LL} \propto (A + B \cos(\phi)) \Re[F_1 \tilde{\mathcal{H}} + \xi(F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi(\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}}] \\ \hline \mathsf{p/n} \quad \Delta \sigma_{LL} \propto (A + B \cos(\phi)) \Re[F_1 \tilde{\mathcal{H}} + \xi(F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi(\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}}] \\ \hline \mathsf{p/n} \quad \Delta \sigma_{LL} \propto (A + B \cos(\phi)) \Re[F_1 \tilde{\mathcal{H}} + \xi(F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi(\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}}] \\ \hline \mathsf{p/n} \quad \Delta \sigma_{LL} \propto (A + B \cos(\phi)) \Re[F_1 \tilde{\mathcal{H}} + \xi(F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi(\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}}] \\ \hline \mathsf{p/n} \quad \Delta \sigma_{LL} \propto (A + B \cos(\phi)) \Re[F_1 \tilde{\mathcal{H}} + \xi(F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi(\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}}] \\ \hline \mathsf{p/n} \quad \Delta \sigma_{LL} \propto (A + B \cos(\phi)) \Re[F_1 \tilde{\mathcal{H}} + \xi(F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi(\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}}] \\ \end{split}$$

Argonne

ACCESSING CFFs

- Accessing all CFFs:
 - Measuring observables involving polarized beams and polarized targets.
 - Experiments on protons or neutrons have different sensitivities.
- Comparing data on the proton and the neutron is essential to access the flavor dependence.
- No free neutron target: experiments with light nuclei, as deuterium.
- Nuclear environment effects are assessed comparing proton data in H and D.
- One of the main motivations for the Run Group C (RGC) experiment with the CLAS12 detector at Jefferson Laboratory using polarized NH₃ and ND₃ targets.

$$\begin{array}{c} \mathsf{p/n} \quad \Delta \sigma_{LU} \propto \ \sin(\phi) \Im \left[F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} - \xi \frac{t}{4M^2} F_2 \mathcal{E} \right] \\ \hline \mathsf{p/n} \quad \Delta \sigma_{UL} \propto \ \sin(\phi) \Im \left[F_1 \tilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi (\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}} \right] \\ \hline \mathsf{p/n} \quad \Delta \sigma_{LL} \propto (A + B \cos(\phi)) \Re [F_1 \tilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi (\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}}] \\ \end{array}$$

e⁻

EXPERIMENTAL SETUP

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

DVCS MEASUREMENT WITH RGC

THE RGC POLARIZED TARGET

V. Lagerquist and the JLab Target Group

EXPERIMENTAL DETERMINATION OF THE DVCS ASYMMETRIES

$$\begin{array}{c} \overbrace{e^{-}}^{P_{t}} p/n & A_{LU} = \frac{P_{t}^{-}(N^{++} - N^{-+}) + P_{t}^{+}(N^{+-} - N^{--})}{P_{b} \times (P_{t}^{-}(N^{++} + N^{-+}) + P_{t}^{+}(N^{+-} + N^{--}))} \\ \overbrace{e^{-}}^{P_{t}} p/n & A_{UL} = \frac{N^{++} + N^{-+} - N^{+-} - N^{--}}{D_{f} \times (P_{t}^{-}(N^{++} + N^{-+}) + P_{t}^{+}(N^{+-} + N^{--})))} \\ \overbrace{e^{-}}^{P_{t}} p/n & A_{LL} = \frac{N^{++} + N^{--} - N^{+-} - N^{-+}}{P_{b} \times D_{f} \times (P_{t}^{-}(N^{++} + N^{-+}) + P_{t}^{+}(N^{+-} + N^{--})))} \end{array}$$

- Fraction of polarized electrons: beam polarization P_b, measured using Moller scattering during the experiment (~83%).
- Fraction of polarized nucleons in D: target polarization Pt assessed with the analysis of the elastic reaction.
- Fraction of D in the ND₃ target: dilution factor D_f assessed using data on a carbon target (similar nuclear environment to nitrogen).

TARGET POLARIZATION MEASUREMENT

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

MEASURING THE TARGET POLARIZATION WITH THE ELASTIC REACTION

• Elastic ($ep \rightarrow e'p'$) double spin asymmetry.

$$A_{th} = \frac{2\tau G[\frac{M_p}{E_b} + G(\tau \frac{M_p}{E_b} + (1+\tau)\tan(\frac{\theta}{2})^2)]}{1 + G^2 \frac{\tau}{\epsilon}} \quad G = \frac{G_M}{G_E}$$

- Product of the beam and target polarizations. $P_b P_t = \frac{A_{meas}}{A_{th}}$
- It is measured for each orientation of the target polarization, integrating over the whole experiment to have enough statistics.

$$P_b P_t = \frac{\sum_{i=0}^{N_{bins}} f_i A_{th,i} (N_i^+ - N_i^-)}{\sum_{i=0}^{N_{bins}} f_i^2 A_{th,i}^2 (N_i^+ + N_i^-)} \qquad f = \frac{N_D}{N_{ND_3}}$$

ANALYSIS AND RESULTS

- Elastic events are selected from (e'p') final states, using four-momentum conservation to build exclusivity variables.
- Data on NH₃/ND₃ is compared to data on C to measure the dilution factor.
- Fermi motion is a challenge for measurements in ND₃!
- Good (or very good) target polarization performances.

ENERGY U.S. Department of Energy laboratory

Another challenge for deuterium data are lower polarizations.

Preliminary

DVCS IN ND₃

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

pDVCS ANALYSIS

- Selecting (e'p'γ) final states, building exclusivity variables.
- Comparison between ND₃ and C data to measure the dilution factor.

U.S. DEPARTMENT OF ENERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

NEUTRAL PION BACKGROUND

- Important source of background: electroproduction of neutral pions.
- Contamination is assessed with MC simulations:
 - Measuring the production of neutral pion events in RGC
 - Estimating the fraction of events passing the DVCS selection.

 $eN \to e'N'\pi^0 \to e'N'\gamma(\gamma)$

BEAM SPIN ASYMMETRY FOR pDVCS IN ND₃

$$egin{aligned} A_{LU}(\phi) &\simeq rac{s_{1,unp}^I ext{sin}(\phi)}{c_{0,unp}^{BH} + \left(c_{1,unp}^{BH} + c_{1,unp}^I
ight) \cos(\phi)} \ \end{aligned}$$
 with $s_{1,unp} \propto \mathfrak{Im} \left[F_1 \mathcal{H} + \xi(F_1 + F_2) ilde{\mathcal{H}} - \xi rac{t}{4M^2}F_2 \mathcal{E}
ight]$

- VGG model and KM15 fit for free protons.
- BSA does not account for the N background.

$$A_{LU} = rac{P_t^-(N^{++}-N^{-+})+P_t^+(N^{+-}-N^{--})}{P_b imes(P_t^-(N^{++}+N^{-+})+P_t^+(N^{+-}+N^{--}))}$$

 Dilution factor is 50%: contribution from bound protons in N must be considered.

TARGET SPIN ASYMMETRY FOR pDVCS IN D

$$egin{aligned} A_{UL}(\phi) &\simeq rac{s_{1,LP}^I \sin(\phi)}{c_{0,unp}^{BH} + \left(c_{1,unp}^{BH} + c_{1,unp}^I
ight)\cos(\phi)} \ \end{aligned}$$
 with $s_{1,LP} \propto \Im \mathfrak{m} \left[F_1 ilde{\mathcal{H}} + \xi(F_1 + F_2)\left(\mathcal{H} + rac{x_{bj}}{2}\mathcal{E}
ight) - \xi\left(rac{x_{bj}}{2}F_1 + rac{t}{4M^2}F_2
ight) ilde{\mathcal{E}}
ight] \end{aligned}$

- Constant shift to the TSA?
- Under investigation:
 - Normalization of the yields?
 - Acceptance effects?
 - Target density?

TARGET SPIN ASYMMETRY FOR pDVCS IN D

V

$$egin{aligned} A_{UL}(\phi) &\simeq rac{s_{1,LP}^I \sin(\phi)}{c_{0,unp}^{BH} + \left(c_{1,unp}^{BH} + c_{1,unp}^I
ight)\cos(\phi)} \end{aligned}$$
 with $s_{1,LP} \propto \Im \mathfrak{m} \left[F_1 ilde{\mathcal{H}} + \xi(F_1 + F_2)\left(\mathcal{H} + rac{x_{bj}}{2}\mathcal{E}
ight) - \xi\left(rac{x_{bj}}{2}F_1 + rac{t}{4M^2}F_2
ight) ilde{\mathcal{E}}
ight] \end{aligned}$

- Constant shift to the TSA?
- Under investigation:
 - Normalization of the yields?
 - Acceptance effects?
 - Target density?

NEUTRON DVCS

- RGC nDVCS events en \rightarrow e'n' γ
- Proton and neutron detection in the central detector:
 - Tracking system (CVT) around the target.
 - Four layers of scintillators: CTOF and CND.

- CD neutrons = hits in CTOF/CND not associated with tracks.
- If a proton track is missed, it is assigned a neutron PID.
- It is assigned a straight track; its momentum is not well reconstructed: can be seen in exclusivity variable distributions!

FAKE NEUTRON BACKGROUND

- Background studied using MC simulations.
 - True neutron sample, from generated nDVCS.
 - Fake neutron sample from generated pDVCS.

- Goal: PID improvement at detector-level.
 - Machine Learning approach.
 - MC Simulations used to train classifier algorithms.
 - Procedure derived with CLAS12 data on a proton target as well.

NEUTRON BSA IN ND₃

• Applying this method to the neutron sample reduces the fake neutron background.

- Agreement with nDVCS BSA on unpolarized deuterium [Hobart, Niccolai, arXiv:2406.15539 (2024)]
- Insufficient statistics for TSA and DSA for now.
- The remainder of the dataset will be available very soon!

OUTLOOK

- The first polarized target experiment with the CLAS12 detector has been conducted with a rich program around the study of the structure of nucleons.
- DVCS with longitudinally polarized neutrons will give access to new observables related to poorly-known CFFs and their flavor dependence.
- Specific tools have been implemented to deal with a **molecular, polarized target**.
- Preliminary results for proton DVCS and the neutron BSA are encouraging!
- The extraction of the TSA and DSA for the neutron will need the full dataset and refinement of the analysis techniques.
- More results to come with the other two thirds of the dataset available very soon.

Argonne Argonne Argonational Laboratory