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The dominant transition from proton to delta involves a dipole (M1) transition
(spherical S-wave proton WF -> spherical S-wave Delta WF)



The N-A transition
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There also exists a quadrupole (E2 or C2) transition from proton to delta.
(The quadrupole amplitudes are associated with the existence of non-spherical
components in the proton and Delta WF)



The N-A transition

Proton (938 MeV) Delta (1232 MeV)

There also exists a quadrupole (E2 or C2) transition from proton to delta.
(The quadrupole amplitudes are associated with the existence of non-spherical
components in the proton and Delta WF)

The quadrupole to dipole ratio (E2/M1 or C2/M1) is non-zero... Why?

Electric-Quadrupole to Magnetic-Dipole Ratio = EMR = E2/M1
Coulomb-Quadrupole to Magnetic-Dipole Ratio = CMR = C2/M1



The N-A transition

Proton (938 MeV) Delta (1232 MeV)

There also exists a quadrupole (E2 or C2) transition from proton to delta.
(The quadrupole amplitudes are associated with the existence of non-spherical
components in the proton and Delta WF)

The quadrupole to dipole ratio (E2/M1 or C2/M1) is non-zero... Why?

Non-central (tensor) interactions between quarks can account for some of the
spherical deviation, but not all...
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There also exists a quadrupole (E2 or C2) transition from proton to delta.

(The quadrupole amplitudes are associated with the existence of non-spherical
components in the proton and Delta WF)

The quadrupole to dipole ratio (E2/M1 or C2/M1) is non-zero... Why?

At low Q2, the dynamics of a meson cloud are important to describe the structure of
the nucleon.



The N-A transition
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Large Q2, pQCD predicts
EMR -> +1, CMR -> constant
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There also exists a quadrupole (E2 or C2) transition from proton to delta.
(The quadrupole amplitudes are associated with the existence of non-spherical
components in the proton and Delta WF)

The quadrupole to dipole ratio (E2/M1 or C2/M1) is non-zero... Why?

At high Q2, perturbative calculations should become more reliable and helicity
conserving amplitudes are expected to dominate.



World data and status of TFFs
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Extraction of the TFFs has been a central component of
Jlab's experimental program:
(Most of these measurements are from JLab Halls A, B, and C)

At large 07, no direct indication of

EMR — 100% and CMR — constant
(predicted in pQCD regime)



Low Q2 N-A transition form factors

CMR (%)
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Low Q2 landscape is an important region to measure:

® Mesonic cloud effects are predicted to be:
® dominantin explaining the magnitude of the TFFs

® changing most rapidly over all Q2

® Provides an excellent test bed for ChEFT and LQCD
calculations

® Relates the excitation mechanism to spatial information of the
proton and the Delta.

® Tests the predicted convergence of EMR and CMR as Q2 —0.

® Sparsely measured region.
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Low Q2 N-A transition form factors
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Low Q2 landscape is an important region to measure:

® Mesonic cloud effects are predicted to be:
® dominant in explaining the magnitude of the TFFs

® changing most rapidly over all Q2

® Provides an excellent test bed for ChEFT and LQCD
calculations

® Relates the excitation mechanism to spatial information of the

proton and the Delta.

® Tests the predictec

® Sparsely measured region.

convergence of EMR and CMR as Q2 —0.



Low Q2 N-A transition form factors
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Signature of pion cloud

Dominant role of
mesonic d.o.f. at
large distance scale:

Mesonic cloud ~
50% of the
quadrupole
amplitude
magnitude & 1/3 of
the magnetic dipole
strength



Low Q2 N-A transition form factors

Region that new experiment will cover.
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® Low Q2 landscape is an important region to measure:

® Mesonic cloud effects are predicted to be:
® dominantin explaining the magnitude of the TFFs

® changing most rapidly over all Q2

® Provides an excellent test bed for ChEFT and LOCD
calculations

® Relates the excitation mechanism to spatial information of the
proton and the Delta.

® Tests the predicted convergence of EMR and CMR as Q2 —0.

@ Sparsely measured region.



Lattice Calculations
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® Updated LQCD calculations are in progress = new calculations will have a physical pion mass and
uncertainties comparable to experiment.

® Extended Twisted mass collaboration results expected within 2 years.
® Efforts are partly motivated to understand baryon structure for neutrino scattering.

® Low Q2 data will provide a precision benchmark for LQCD calculations.



What can we say about the geometry (shape) of the nucleon?

...ah issue since the 80's

® What is the "shape" of the nucleon?
® Is it spherically symmetric or deformed?
® It deformed, what is the origin of the deformation?
® Exactly how are shape and structure related?
® How can one explore shape?
® Quadrupole moment of the ground state is identically O for a spin 1/2 system.
® Pure proton scattering without spin excitation can't give you any information.
@ The only isolated spin-excitation resonance of the proton is the A™(1232).
® A more comprehensive review can be found at:
® C. Alexandrou, C. Papanicolas, M. Vanderhaeghen,
® "The shape of hadrons", Rev. Mod. Phys. 84, 1231 (2012)

® A. Bernstein, C. Papanicolas
® "Overview: The shape of hadrons" , AIP Cont. Proc. 904, 1 (2007)



Imaging the A and the N-A transition

Empirical transverse charge transition densities

Eur. Phys. J. Special Topics 198, 141 (2011)
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Fig. 18. Quark transverse charge density corresponding to the p — A(1232)Ps3 e.m. tran-
sition. Upper left panel: p and A are in a light-front helicity +1/2 state (pgp”). Upper right
panel: p and A are polarized along the z-axis (p’}p”) as in Fig. 14. The lower panel shows
the quadrupole pattern, whose contribution to the polarized transition density is very small
due to the weak E2/C2 admixtures in the NA transition and practically invisible in the
upper right panel. The light (dark) regions correspond to positive (negative) densities. For
the p — P33(1232) e.m. transition FFs, we use the MAID2007 parametrization.

Latice QCD: Quark transverse
charge density in A+(1232)

Probing hadron wave functions

in Lattice QCD

Phys. Rev. D. 66, 094503 (2002) L5

FIG. 18. Three-dimensional contour plot of the correlator
(black): upper for the rho state with 0 spin projection (cigar
shape) and lower for the A™ state with +3/2 (slightly oblate)
spin projection for two dynamical quarks at x = 0.156. Values
of the correlator (0.5 for the rho, 0.8 for the A™) were chosen
to show large distances but avoid finite-size effects. We have
included for comparison the contour of a sphere (grey).

Phys. Rev. D. 79, 014507 (2009)
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FIG. 10: Lattice QCD results for the quark transverse charge
density p? 3 in a A7 (1232) which is polarized along the posi-
2

tive z-axis. The light (dark) regions correspond to the largest
(smallest) values of the density. In order to see the defor-
mation more clearly, a circle of radius 0.5 fm 1s drawn for
comparison. The density 1s obtained from quenched lattice

QCD results at m, = 410 MeV for the A e.m. FFs [48].



Connections to the neutron structure

@ There are long-known relations between the TFFs and the neutron FFs.
® Pascalutsa, V. & Vanderhaeghen, M. : Phys. Rev. D 76 (2007) [Large-Nc.
® Grabmayr, P. & Buchmann, A. J. : Phys. Rev. Lett. 86 (2001) [CQM + 2-body currents]

@ Gg extraction from TFFs show strong s B JLab Hall-A, MAMI data
. Q) O.1— Nature Com. 12 (2021) 1759
agreement with world data. i CLAS data
® Allows access to low-Q2 region B O b o
. . 0.08— — Fit to world data

where direct measurement of Gy is B
difficult. 0.06- CO

® The relations receive theoretical
corrections that can be analyzed 0.04- e,
and confronted with experimental 55
data e.g.they can be analyzed in a 0.02[ 2 o
theoretical framework that combines £ [

i (0
ChPT with the 1/Nc expansion. 0 0.5 1 1D 2 2.0 3 3.5
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Impact on other domains of nuclear physics

® Generalized polarizabilities (GPs) of the proton:
a =+ NRQCM
- = | SM

® The TFFs enter as an input in the VCS cross section over the A

10 =+ ELM
resonance region - their precise knowledge is necessary forthe & | - - - BChPT
: : : & == DR
precise extraction of the GPs from the measured cross sections B —— Experimental Fit
’ ® This Work

® Physics of interest:

® Electric polarizability puzzle -

® Interplay of paramagnetism & diamagnetism in the proton L L o RN
® Extraction of the polarizability radii and imaging of the oL Y T
induced polarization density. b e ey L e
0 0.2 0.4 0.6 0.8 1
® Neutrino oscillation studies and neutrino-nucleus scattering Q? (GeV?)

® Dominant source of systematic error: uncertainties in neutrino-
nucleus reaction cross sections in the nucleon-resonance region.



Experimental Methodology

Y o = Jal, ™ (Rr + LRy + € Rppcos20x, = virRupcoséx, )

. - q’) \,} For a given 6’X}, , One can measure at least 3 qﬁX}, to
H(e,e'p)r '{:,' simultaneously extract R+ R,, R-and R, ;.

i One can then scan 0y, to extract the relevant
amplitudes A(W, Q7).



Experimental Methodology
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JLab E12-15-001 Experiment
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N — A Transition Form Factors

M1 - Magnetic dipole amplitude CMR = C2/M1

C2 - Coulomb quadrupole amplitude

E2 - Electric quadrupole amplitude EMR = E2/M1
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Recently published! See Atac, et al. Eur.Phys.J.A 60




Proposed to PAC50: low-Q2 TFF measurements in Hall-C

1 ® Standard Hall-C equipment
e

4///‘ v ® 1300 MeV electron beam

SHMS Spectrometer

® Detect proton and electron

72 i\'? & in coincidence
Electron " :
7.3 to 11.606g ® Reconstruct pion from

936 to 952 MeV/c
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Setting SHMS 6 (deg) SHMS P (MeV/c) HMS 6 (deg) HMS P (MeV/c) S/N Time (hrs)
la 18.77 532.53 2 7
2a 25.17 527.72 2 7
3a 33.7 506.61 3.2 6
4a 7.29 0952.26 42.15 469.66 4.3 5
Sa 50.44 418.56 4.9 5
6a 54.47 388.38 4.9 5
Ta 12.37 527.72 2.7 6
1b 22.01 547.54 1.2 6
2b 28.24 542.61 1.4 6
3b 36.52 520.95 2.5 5
4b 8.95 046.93 44.64 483.08 3.4 4
5b 52.68 430.78 3.7 4
6b 56.53 399.92 3.5 4
7b 12.46 535.98 1.6 5
Ic 24.40 562.00 1.5 0
2¢ 30.47 556.95 1.9 0
3c 38.52 534.79 3.5 6
4c 10.37 941.61 46.47 496.06 4.4 6
Sc 54.17 442.64 4.8 6
6¢ 57.85 411.16 4.8 6
Tc 12.69 543.24 2 6
1d 26.24 575.96 1.8 12
2d 32.16 570.80 2.5 11
3d 40.01 548.17 4.5 8
4d 11.63 036.28 47.73 508.64 5.5 8
5d 55.18 454.17 6.9 7
6d 58.71 422.13 6 8
7d 12.47 548.17 2.1 10

Measurement Settings

® Cover a Q% range of 0.015 to 0.055 (GeV/c)?

® 28 arm configurations
® Coverage for 9 Q2 bins.
® 8 days production

® 3 days other (dummy, calibration, etc..)
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do/dQ (u b/sr)

Projected CMR and EMR measurements
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do/dQ (u b/sr)

Projected CMR and EMR measurements

Proposed to PACS50:
Extraction of TFFs at
low Q2

16 E. Projected measurements (Q2 = 0.02)
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do/dQ (u b/sr)

Projected CMR and EMR measurements

15 E- Projected measurements (Q2 = 0.02) _
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do/dQ (u b/sr)

Projected CMR and EMR measurements

16 E. Projected measurements (Q2 = 0.02) .
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Future Analyses at JLab

® CLAS12 has single-pion production coverage up to Q2 = 12 GeV2 over a large range of W.
® Program focused on large range Nucleon excitation resonances.
® Specific sensitivity of expected data to EMR and CMR extraction is unclear.
® How does low-luminosity affect rates at large Q2?

® ALERT phase space will allow:

@ee+ 4He - e'+p+n~ + 3He
ee+d— e +p+a + Py
® Fully exclusive n — A" production, bound tightly vs loosely

® Q2 between 4 and 16 GeV2, haven’t estimated rates yet.
@ SolLID:

@ Can detect azimuthal 27 with high luminosity:

® Limited somewhat by polar angle acceptance and resolution



Exclusive bound n-A° TFFs in 4He
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Exclusive bound n-A° TFFs in 4He

detected in CLAS12 detected in CLAS12 detected in ALERT
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TFFs with SoLID at JLab (J/psi Set-up)

® 15 cm LH2 target
® 11.0 GeV beam Energy

® Luminosity = 10°’Nem 25!

® 4 possible kinematics:

op— 7"

® Electron detected w small angle

® Electron detected w large angle

on—mt

® Electron detected w small angle

® Electron detected w large angle
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® 15 cm LH2 target
® 11.0 GeV beam Energy

® Luminosity = 10°’Nem 25!

® 4 possible kinematics:
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TFFs with SoLID at JLab (J/psi Set-up)

® 15 cm LH2 target
® 11.0 GeV beam Energy

® Luminosity = 10°’Nem 25!

® 4 possible kinematics:

op— 7"

® Electron detected w small angle

® Electron detected w large angle

on—mt

® Electron detected w small angle

® Electron detected w large angle




TFFs with SoLID at JLab (J/psi Set-up)

® Small angle electrons vs large angle
electrons:

® Advantages for small angle:
® Better resolutions

® LGC for PID
@ Standard Trigger Setup

._,-u—'-"‘v

—

Lo
- “w——

@ Better systematics

@ Advantages for large angle: =15-25 degl™ 0

® Higher Q2 reach ——

® Better ., and ¢, coverage




TFFs with SoLID at JLab (J/psi Set-up)

® Projections
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TFFs with SoLID at JLab @ 20 GeV

® Q2 reach
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Summary

® The N— A TFFs represent a central element of the nucleon dynamics & has been an important part of Jefferson
Lab’s experimental program (Halls A, B & C)

® Approved experiment will extend these measurements in the low Q2 region:

® Test bed for ChEFT calculations

® High precision benchmark data for the Lattice QCD calculations

®
®

® Will test it the QCD prediction that CMR & EMR converge as Q2—0

nsig

nsig

Ntto t

Ntto t

ne mesonic-cloud dynamics within a region where they are dominant and rapidly changing

ne origin of non-spherical components in the nucleon wave-function

® N— A TFFs enter as an input in scientific problems that extend from hadronic to neutrino physics, and will advance
our understanding of the baryon structure & beyond

® With CLAS12/ALERT

® In-medium influence to TFF?

® With SollID:

«» We can extend world data for high Q2 and test pQCD
predictions while running parasitic with J/psi

CMR (%)
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