
How the Contact can Produce

Loosely Bound 
Hadronic 
Molecules

in Heavy-ion Collisions
Justin Pickett                                       Eric Braaten                                       Kevin Ingles



What are we Studying?

Image credit: Daniel Dominguez/Cern
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Loosely bound hadronic molecules are composite 
particles consisting of mesons or baryons (or 
nuclei) bound together by the strong interaction. 

Their binding energies are tiny compared to their 
reduced mass. 

The  is a loosely bound charm-meson 
molecule composed of  or . 
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Molecules from Heavy-ion Collisions
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A relativistic heavy-ion collision can create a quark-
gluon plasma (QGP) which then cools and expands into 
a hadron resonance gas (HRG).  

Despite the temperature of the HRG being much 
higher than their binding energies, loosely bound 
molecules are still observed in particle detectors. 

The fact that these molecules emerge from this 
process has been referred to as the “snowball in hell” 
puzzle. 



The Snowball in Hell Puzzle
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The multiplicity  refers to the number of particles produced in 
a collision event per unit rapidity.  

The "snowball in hell" puzzle is the unexpectedly large multiplicity 
 of a loosely bound hadronic molecule . 

The path to answering the “snowball in hell” puzzle will be to derive 
an expression which predicts  in heavy-ion collisions.

dN/dy

dNX /dy X

dNX /dy



Recap pt. 1
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Molecules emerging from heavy-ion collisions have been 
referred to as “snowballs in hell” since the energy that binds them 
is much weaker than the temperature of medium they’re in. 

We want to predict their multiplicity (or more simply—answer 
how many snowballs are formed in a given region of space), as 
well as provide more insight into the physics at play here.



How to obtain the multiplicity 
?dNX /dy



Toy Model for the System

At a proper time  after the collision, the system is 
locally homogeneous with temperature  and 
volume . 

After the transition to a HRG from a QGP at 
chemical freezeout hadron abundances are fixed. 

The HRG then expands and cools until kinetic 
freezeout, when scattering stops due to the 
diluteness of the gas. 

τ
T(τ)

V(τ)
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After Kinetic Freeze-out
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After kinetic freeze-out, when the gas becomes sufficiently dilute, both the 
number density  of a hadron  and the number density  of pions 
decrease in proportion to .  

Since interactions (other than those within the molecule) have ceased, the 
ratio of the number densities of a molecule  and  remain fixed and must 

be equal to the ratio of the multiplicities observed in the detector: 

𝔫h h 𝔫π
1/V(τ)

X π

⟹
𝔫X

𝔫π
=

dNX /dy
dNπ /dy

remains fixed.



After Kinetic Freeze-out (cont.)
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𝔫X

𝔫π
=

dNX /dy
dNπ /dy

The ratio of multiplicities can be predicted by the ratio of densities.  

The pion multiplicity is readily available from experimental data.   
We will show later how to deal with . 

To predict the multiplicity , we must find a way to obtain .

𝔫π

dNX /dy 𝔫X



So to obtain  we need  
after kinetic freeze-out. 

 
But now how to find ?

dNX /dy 𝔫X

𝔫X



The Contact
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Molecules X (with reduced mass ) have tiny binding energies  with 
binding momentum , where  is the large s-wave scattering length.  

For systems with a large s-wave scattering length, the thermodynamic variable 
conjugate to  is called the contact .  

The contact can be thought of as a measure of the probability for two particles to be 
short distance from each other.

μ |εX | = γ2 /2μ
γ = 1/a a

γ C



The Contact Density
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The contact  was originally introduced by Shina Tan in 2005 in the context of a 
strongly interacting fermi gas. Tan derived many universal relations (all involving ) 
between short-distance properties of the many-body system. 

Tan’s adiabatic relation implies that the contact for a molecule  is given by 

. 

For a dilute gas of volume , the contact density  reduces to the contact 
for  multiplied by the molecule number density : 

C
C

X

CX = 8πγ

V 𝒞X = CX /V
X 𝔫X

𝒞X = CX𝔫X = 8πγ𝔫X .
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The previous slide implies that at some 
proper time  there is a crossover 
where the HRG becomes dilute enough 
such that:  

We have now replaced the problem of 
finding  with finding .

τ*

𝔫X(τ) = (1/8πγ)𝒞X(τ)

𝔫X(τ) 𝒞X(τ)

The Crossover τ*



Recap pt. 2
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To understand the production of loosely bound hadronic molecules in heavy-ion 
collisions, we set out to derive an expression for the multiplicity . 

After a crossover at , the HRG is sufficiently dilute such that  , 

where   for . 

The last remaining piece to the puzzle will be to derive an expression for . 
Once we have done that, everything can be put together to solve for .

dNX /dy

τ*
𝔫X

𝔫π
=

dNX /dy
dNπ /dy

𝔫X(τ) = (1/8πγ)𝒞X(τ) τ ≳ τ*

𝒞X(τ)
dNX /dy



Time for a little bit of algebra…



Evolution of  𝒞X(τ)
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Before Crossover 
(τkf < τ ≲ τ*)

The contact density of a molecule  has 
scaling dimension 4. It decreases as 

 
 

X

𝒞X(τ) ∝ 1/V(τ)4/3

After Crossover 
(τ ≳ τ*)

After some time , the contact density 
decreases as  

 

τ*

𝒞X(τ) ∝ 1/V(τ)

Quantum field theory tells us that the contact density is the 
expectation value of an operator with scaling dimension 4.



Evolution of   (cont.)𝒞X(τ)
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Before Crossover 
(τkf < τ ≲ τ*)

𝒞X(τ)
𝒞X(τkf)

= [ V(τkf)
V(τ) ]

4/3

= [ 𝔫π(τ)
𝔫π(τkf) ]

4/3

After Crossover 
(τ ≳ τ*)

𝒞X(τ)
𝒞X(τ*)

=
V(τ*)
V(τ)

=
𝔫π(τ)
𝔫π(τ*)

Using the fact , we find:𝔫π(τ) ∝ 1/V(τ)
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𝓒X(τ) = 𝓒X(τkf)[ 𝖓π(τ)
𝖓π(τ*) ] [ 𝖓π(τ*)

𝖓π(τkf) ]
4/3

Before Crossover 
(τkf < τ ≲ τ*)

𝒞X(τ) = 𝒞X (τkf) [𝔫π(τ)/𝔫π (τkf)]
4/3

Use to obtain 𝒞X(τ*)

After Crossover 
(τ ≳ τ*)

𝒞X(τ) = 𝒞X (τ*) [𝔫π(τ)/𝔫π (τ*)]

Evolution of   (cont.)𝒞X(τ)



Evolution of  𝔫X(τ)
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Equation the two expressions for , the molecule number density is 

 

𝒞X(τ)

𝔫X(τ) =
1

8πγ
𝒞X(τkf)[ 𝔫π(τ*)

𝔫π(τkf) ]
1/3

𝔫π(τ)
𝔫π(τkf)

, τ ≳ τ*

   Previously:  

 
   Dilute limit:  

𝒞X(τ) = 𝒞X(τkf)[ 𝔫π(τ)
𝔫π(τ*) ] [ 𝔫π(τ*)

𝔫π(τkf) ]
4/3

, τ ≳ τ*

𝒞X(τ) = 8πγ𝔫X(τ), τ ≳ τ*



Estimating 𝔫π(τ*)
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rX = 1/2γX

rπ(τ*) = Γ (4/3)(4π)−1/3rX /κ

Assuming  is uniform, the mean nearest-pion 
distance is given by 

 . 

To estimate  we use the time when  exceeds  
by a small numerical factor parameterized by : 

        We estimate   is treated as a 
phenomenological parameter.

𝔫π(τ)

rπ(τ) = Γ (4/3) [4π𝔫π(τ)]−1/3

τ* rπ(τ) rX
κ

𝔫π(τ*) = (2κγ)3 ← κ



Now let’s put the pieces 
together.



Molecule Multiplicity
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: ,       Previously 𝔫X(τ) =
1

8πγ
𝒞X(τkf)[ 𝔫π(τ*)

𝔫π(τkf) ]
1/3

𝔫π(τ)
𝔫π(τkf)

𝔫π(τ*) = (2κγ)3

⟹ dNX /dy =
κ

4π [𝒞X(τkf)/𝔫π(τkf)4/3] dNπ /dy .

After  the ratio  remains fixed and is equal to the ratio  
of the multiplicities observed at the detector:

τ* 𝔫X(τ)/𝔫π(τ) (dNX /dy)/(dNπ /dy)



Molecule Multiplicity (cont.)
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Previously: dNX /dy =
κ

4π [𝒞X(τkf)/𝔫π(τkf)4/3] dNπ /dy

Dividing  by , we find: 

 

The ratio of molecule multiplicities 

equals the ratio of their contact densities 

at kinetic freeze-out.

dNX /dy dNd /dy

dNX /dy = [𝒞X(τkf)/𝒞d(τkf)] dNd /dy

dNd /dyCentrality

(9.82 ± 1.58) × 10−2

(7.6 ± 1.25) × 10−2

(4.76 ± 0.82) × 10−2

(1.90 ± 0.41) × 10−2

(0.51 ± 0.14) × 10−2

(0 − 10) %

(10 − 20) %

(20 − 40) %

(40 − 60) %

(60 − 80) %

Multiplicity is measured in ranges of centrality: 
It indicates how head-on (small %) or peripheral 

(large %) the collision was.

Deuteron Multiplicity from ALICE



Evaluating the Contact Density
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Thermodynamic variables can be calculated using the 
virial expansion.  

Labeling the constituents of the molecule by , the virial 
expansion is a power series around small fugacities : 

For sufficiently small , to leading order in  the virial 
expansion of the contact density   is given by:

σ
zσ

𝔫σ zσ
𝒞Xkf

number density:   
mass: 

𝔫σ
mσ

zσ = 𝔫σ(2π /mσT )3/2 ← Boltzmann approximation

𝒞X(τkf) =
16
π (μT)2 z1z2F (γ/ 2μT) F(w) = 1 + πw + …, (w > 1)



How many snowballs?



Hypertriton ( ) Multiplicity3
ΛH
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 is a bound state of a deuteron and 
strange baryon  with a  separation 
energy of  keV.  

In Pb-Pb collisions at  TeV, 
the ALICE collaboration also measured 
the multiplicity of  (and ). 

Using the measured , a 
prediction for the mean hypertriton 
multiplicity  can be made in 
the (0-10)% centrality bin.

Λ
3 H

Λ Λ
148 ± 40

sNN = 2.76

Λ
3 H Λ

3 H̄

dNd /dy

dN3
ΛH /dy

(0 − 10) %

Observed dN3
ΛH /dy

(10.4 ± 3.9) × 10−5(14.7 ± 3.6) × 10−5

Centrality Predicted dN3
ΛH /dy

The prediction for  is consistent with the 
ALICE result to within the errors.

dN3
ΛH /dy

dN3
ΛH /dy = (𝒞3

ΛHkf /𝒞dkf) dNd /dy

Our Formula:



 Multiplicityχc1(3872)
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The  is a loosely bound charm-meson molecule 
discovered in 2003. The difference between its mass and 
the threshold for the charm meson pair  is 

 keV.  

The CMS collaboration has presented evidence for the 
production of  in Pb-Pb collisions at 

 TeV. 

 Using the measured , we can make a prediction 
for the  multiplicity  in the (0-10)% bin.

χc1(3872)

D*0D̄0

−50 ± 93

χc1(3872)
sNN = 5.02

dNd /dy
χc1(3872) dNχc1

/dy

(0 − 10) %

Predicted dNχc1
/dy

(23.4 ± 7.8) × 10−5

Centrality

dN3
ΛH /dy = (𝒞3

ΛHkf /𝒞dkf) dNd /dy

Our Formula:



Future Outlook

The contact provides a simple 
explanation for a 30+ year old puzzle.

Using an approximation for the contact 
density, we calculated the multiplicities 
of loosely bound molecules. 

Our approach can also be extended to 
obtaining the transverse momentum 
distributions for loosely bound 
hadronic molecules.





The Contact Density
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Tan’s adiabatic relation states that the contact  can be expressed as a 
derivative of the internal energy  with entropy  held fixed: 

 

If we insert the binding energy , we find that the contact 
for a molecule  is 

. 

For a dilute gas of volume , the contact density  reduces 
to the contact for  multiplied by the molecule number density : 

C
E S

C = − 8πμ ( ∂E
∂γ )

S
.

εX = − γ2
X /2M

X
CX = 8πγX

V 𝒞X = CX /V
X 𝔫X

𝒞X = 8πγ𝔫X .



Estimating the Crossover Time
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To estimate , we use the time when the mean nearest-pion 
distance  surpasses the mean molecule constituent 
separation  by a numerical factor: 

. 

The molecule has a universal wavefunction: 

. 

The mean pion distance is .  

This implies the pion number density at  reduces to:  

.

τ*
rπ(τ)

rX

rπ(τ*) = Γ (4/3)(4π)−1/3rX /κ

ψX(r) =
γ

2π
1
r

e−γr ⟹ rX = ⟨r⟩ = 1/2γ

rπ(τ) = Γ (4/3) [4π nπ(τ)]−1/3

τ*

𝔫π(τ*) = (2κγ)3

rX = 1/2γX

rπ(τ*) = Γ (4/3)(4π)−1/3rX /κ



Estimating κ
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Previously: dNX /dy =
κ

4π (𝒞Xkf /𝔫4/3
πkf) dNπ /dy .

The deuteron  is a proton-neutron  bound state with a relatively small 
binding energy  MeV.  

Using the measured deuteron multiplicity , the parameter  can be 
obtained from the expression for : 

. 

Using ALICE data we find 

(d ) (pn)
εd = 2.225

dNd /dy κd
dNX /dy

κd = 4π (𝔫4/3
πkf /𝒞dkf)

dNd /dy
dNπ /dy

κd = 0.18 ± 0.04


