Subeikonal corrections to dijet production in DIS

Tiyasa Kar

in collaboration with Andrey Tarasov and Vladimir Skokov

Department of Physics North Carolina State University

Supported by DOE, GHP APS, and NCSU

Dijet Production in DIS

- Saturation at EIC: What are the emergent properties of dense system of the gluons?
- Dijet production will be the golden channel to detect saturation at EIC.

Figure: Caucal, Salazar, Venugopalan, 2108.06347

• Small $x \Rightarrow$ the dipole picture of DIS.

Motivation: Precision Calculation

Figure: Caucal, Salazar, Schenke, Stebel, Venugopalan, 2308.00022

$$d\sigma^{\gamma^*A \to q\bar{q}x} = \underbrace{\mathrm{LO}}_{\alpha_s^0 s^0} + \underbrace{\mathrm{NLO}}_{\alpha_s^1 s^0} + \underbrace{\mathrm{SubEik}}_{\alpha_s^0 s^{-1}} + \dots$$
(1)

NLO calculations to dijet:

- Caucal, Salazar, Schenke, Stebel, Venugopalan, 2308.00022.
- Caucal, Salazar, Venugopalan, 2108.06347.
- Boussarie, Grabovsky, Szymanowski, Wallon, 1606.00419.
- Beuf, 1708.06557.

- Previous calulation of dijet $q(\check{q}, h', \beta)$ production in small x: $q(\check{k}, h, \alpha)$ [Agostini, Altinoluk, Armesto, 2403.04603, Altinoluk, Beuf, Czavka, Tymowska, 2012.03886] • Drawback: Final result depends explicitly on the finite width L^+ . $2\pi\delta(k_1^+ + k_2^+ - q^+) N_c \,\alpha_{\rm em} \,e_f^2 \left[1 + \left(\frac{k_2^+ - k_1^+}{q^+}\right)^2 \right] \,2{\rm Re}\,\left(-i\right)\frac{L^+}{2} \int_{\mathbf{z},\mathbf{v}',\mathbf{w}'} e^{i\mathbf{k}_1 \cdot \left(\mathbf{v}' - \mathbf{z}\right)} \,e^{i\mathbf{k}_2 \cdot \left(\mathbf{w}' - \mathbf{z$ $\times \frac{(\mathbf{w}^{\prime j} - \mathbf{v}^{\prime j})}{|\mathbf{w}^{\prime} - \mathbf{v}^{\prime}|} \bar{Q} \operatorname{K}_{1} \left(\bar{Q} |\mathbf{w}^{\prime} - \mathbf{v}^{\prime}| \right) \left\langle \frac{1}{N_{c}} \operatorname{Tr} \left[\mathcal{U}_{F}(\mathbf{w}^{\prime}) \mathcal{U}_{F}^{\dagger}(\mathbf{v}^{\prime}) - 1 \right] \left[\mathcal{U}_{F}(\mathbf{z}) \overleftrightarrow{\partial_{\mathbf{z}^{\prime}}} \mathcal{U}_{F}^{\dagger}(\mathbf{z}) \right] \right\rangle$
- Alternative approach: Application of background field method techniques.

Our Approach: The Background Field Method

The amplitude of
$$\gamma^* \to q\bar{q}$$
:

$$i\mathcal{M} = ie \int d^4y \bar{u}(k_1) \gamma^{\mu} v(k_2) \epsilon_{\mu}(q) e^{ik_1 y} e^{ik_2 y} e^{-iqy} \qquad (2)$$

• Inserting 2 complete sets of states using the Schwinger's notation,

$$i\mathcal{M} = -ie \int d^4y \int d^4x_1 \int d^4x_2 \bar{u}(k_1) e^{ik_1x_1} (x_1|\not\!\!p \frac{i}{\not\!\!p}|y) \gamma^{\mu}(y|\frac{i}{\not\!\!p} \not\!\!p|x_2) e^{ik_2x_2} v(k_2) \epsilon_{\mu}(q) e^{-iqy}$$
(3)

• To account for multi-gluon background interactions, we promote

$$\frac{i}{\not p} \to \frac{i}{\not P} \quad \text{where} \quad P_{\mu} = p_{\mu} + gA_{\mu}.$$
(4)

The Quark Propagator in the Background Field

• The quark propagator upon expansion in g:

$$\int d^4x_1 \bar{u}(k_1) e^{ik_1x_1}(x_1|p_1\frac{i}{p} - p\frac{i}{p} Ap\frac{1}{p^2} + p\frac{i}{p} Ap\frac{1}{p^2} + p\frac{i}{p^2} Ap\frac{1}{p^2} + \dots |y)$$
(5)

• This series can be resummed using the standard commutation relations

$$i \int d^4 x_1 \bar{u}(k_1) e^{ik_1 x_1} k_1^2(x_1 | \frac{1}{P^2 + \frac{1}{2}\sigma^{\mu\nu} F_{\mu\nu}} | y) \tag{6}$$

• We consider the nucleus to be boosted along the x^+ direction with the boost parameter λ .

$$A_{-}(x^{+}, x^{-}, x_{\perp}) \sim \lambda \tilde{A}_{-}(\frac{1}{\lambda}x^{+}, \lambda x^{-}, x_{\perp}) \qquad F_{-\perp} \sim \lambda \tilde{F}_{-\perp} \\ A_{\perp}(x^{+}, x^{-}, x_{\perp}) \sim \tilde{A}_{\perp}(\frac{1}{\lambda}x^{+}, \lambda x^{-}, x_{\perp}) \qquad F_{ij} \sim \tilde{F}_{ij} \qquad (7) \\ A_{+}(x^{+}, x^{-}, x_{\perp}) \sim \frac{1}{\lambda} \tilde{A}_{+}(\frac{1}{\lambda}x^{+}, \lambda x^{-}, x_{\perp}) \qquad F_{+\perp} \sim \frac{1}{\lambda} \tilde{F}_{+\perp}$$

Expansion of the Resummed Propagator

• Expanding the propagator,

$$k_{1}^{2}(k_{1}|\frac{1}{P^{2} + \frac{g}{2}\sigma^{\mu\nu}F_{\mu\nu}}|k+q) = k_{1}^{2}(k_{1}|\frac{1}{p^{2}} - \frac{1}{p^{2}}\left(g\{p^{\mu}, A_{\mu}\} + g^{2}A^{\mu}A_{\mu} + \frac{g}{2}\sigma^{\mu\nu}F_{\mu\nu}\right)\frac{1}{p^{2}} + \frac{1}{p^{2}}\left(g\{p^{\mu}, A_{\mu}\} + g^{2}A^{\mu}A_{\mu} + \frac{g}{2}\sigma^{\mu\nu}F_{\mu\nu}\right)\frac{1}{p^{2}}\left(g\{p^{\mu}, A_{\mu}\} + g^{2}A^{\mu}A_{\mu} + \frac{g}{2}\sigma^{\mu\nu}F_{\mu\nu}\right)\frac{1}{p^{2}} - \dots |k+q|$$
(8)

Example

• Keeping the dominant component of the background field A_{-} :

$$k_{1}^{2}(k_{1}|\frac{1}{p^{2}+2p^{-}A_{-}+i\epsilon}|k+q) = k_{1}^{2}(k_{1}|\frac{1}{p^{2}+i\epsilon}-\frac{1}{p^{2}+i\epsilon}2p^{-}A_{-}\frac{1}{p^{2}+i\epsilon} + \frac{1}{p^{2}+i\epsilon}2p^{-}A_{-}\frac{1}{p^{2}+i\epsilon}2p^{-}A_{-}\frac{1}{p^{2}+i\epsilon}-\dots|k+q)$$
(9)

• Taking the poles p^+ of the intermediate propagator,

$$\left\{ (k_{1\perp}|k_{\perp}+q_{\perp})2\pi\delta(k_{1}^{+}-k^{+}-q^{+}) + \int_{-\infty}^{\infty} dz^{-}e^{-i(k^{+}+q^{+})z^{-}}(k_{1\perp}|i\int_{z^{-}}^{\infty} dz_{1}^{-}e^{i\frac{p_{1}^{-}}{2k_{1}^{-}}z_{1}^{-}} A_{-}(z_{1}^{-})e^{-i\frac{p_{1}^{-}}{2k_{1}^{-}}z_{1}^{-}}e^{i\frac{p_{1}^{-}}{2k_{1}^{-}}z_{-}^{-}} + (i)^{2}\int_{z^{-}}^{\infty} dz_{2}^{-}\int_{z_{2}^{-}}^{\infty} dz_{1}^{-}e^{i\frac{p_{1}^{-}}{2k_{1}^{-}}z_{1}^{-}}A_{-}(z_{1}^{-})e^{-i\frac{p_{1}^{-}}{2k_{1}^{-}}z_{1}^{-}}e^{i\frac{p_{1}^{-}}{2k_{1}^{-}}z_{2}^{-}} A_{-}(z_{2}^{-})e^{-i\frac{p_{1}^{-}}{2k_{1}^{-}}z_{2}^{-}}e^{i\frac{p_{1}^{-}}{2k_{1}^{-}}z_{-}^{-}} \dots |k_{\perp}+q_{\perp}) \right\} 2\pi\delta(k_{1}^{-}-k^{-}-q^{-})$$

$$(10)$$

• Exponential phases describe the transverse motion of quarks inside the background field.

0

• Expansion of the phase:

$$e^{i\frac{p_{\perp}^{2}}{2k_{1}^{-}}z_{1}^{-}}A_{-}(z_{1}^{-})e^{-i\frac{p_{\perp}^{2}}{2k_{1}^{-}}z_{1}^{-}} = A_{-}(z_{1}^{-}) + \frac{iz_{1}^{-}}{2k_{1}^{-}}[p_{\perp}^{2}, A_{-}(z_{1}^{-})] + \dots$$

$$= A_{-}(z_{1}^{-}) - \frac{iz_{1}^{-}}{2k_{1}^{-}}\{p^{k}, i\partial_{k}A_{-}(z_{1}^{-})\} + \dots$$
(11)

• Power counting scheme \implies Each subsequent term is suppressed by powers of z^- .

$$A_{-}(z^{-}) \sim \lambda \tilde{A}_{-}(\lambda x^{-})$$

$$\implies \int dz^{-} A_{-}(z^{-}) \sim \int d\tilde{z}^{-} \tilde{A}_{-}(\tilde{z}^{-})$$

$$\implies \int dz^{-} z^{-} A_{-}(z^{-}) \sim \frac{1}{\lambda} \int d\tilde{z}^{-} \tilde{z}^{-} \tilde{A}_{-}(\tilde{z}^{-}) \qquad (12)$$

• Keeping the leading term,

$$e^{i\frac{p_{\perp}^{2}}{2k_{1}^{-}}z_{1}^{-}}A_{-}(z_{1}^{-})e^{-i\frac{p_{\perp}^{2}}{2k_{1}^{-}}z_{1}^{-}} \to A_{-}(z_{1}^{-})$$
(13)

• We reproduce the eikonal result:

$$k_{1}^{2}(k_{1}|\frac{1}{p^{2}+2p^{-}A_{-}+i\epsilon}|k+q) = 2\pi\delta(k_{1}^{-}-k^{-}-q^{-})(k_{1\perp}|2\pi\delta(k^{+}+q^{+}-\frac{p_{\perp}^{2}}{2k_{1}^{-}}) + (U-1)\frac{i}{k^{+}+q^{+}-\frac{p_{\perp}^{2}}{2k_{1}^{-}}}|k_{\perp}+q_{\perp})$$
(14)

Subeikonal Propagator

• Considering the first 2 terms of the expansion,

$$e^{i\frac{p_{\perp}^{2}}{2k_{1}^{-}}z_{1}^{-}}A_{-}(z_{1}^{-})e^{-i\frac{p_{\perp}^{2}}{2k_{1}^{-}}z_{1}^{-}} \to A_{-}(z_{1}^{-}) - \frac{z_{1}^{-}}{2k_{1}^{-}}\{p^{k}, F_{-k}(z_{1}^{-})\}$$
(15)

• With the subeikonal correction,

$$k_{1}^{2}(k_{1}|\frac{1}{p^{2}+2p^{-}A_{-}+i\epsilon}|k+q) = 2\pi\delta(k_{1}^{-}-k^{-}-q^{-})$$

$$\times (k_{1\perp}|\int_{-\infty}^{\infty} dz^{-}\left\{ [\infty, z^{-}] - i\int_{z^{-}}^{\infty} dz_{1}^{-}\frac{z_{1}^{-}}{2k_{1}^{-}} [\infty, z_{1}^{-}]\{p^{k}, F_{-k}(z_{1}^{-})\}[z_{1}^{-}, z^{-}] + \dots \right\}$$

$$e^{-i(k^{+}+q^{+}-\frac{p_{\perp}^{2}}{2k_{1}^{-}})z^{-}}|k_{\perp}+q_{\perp})$$
(17)

- This is not the complete subeikonal propagator.
- The general full result with all the components of the background field can be obtained using similar techniques.

The General Subeikonal Propagator

• Taking all the terms,

$$k_{1}^{2}(k_{1}|\frac{1}{P^{2} + \frac{1}{2}\sigma^{\mu\nu}F_{\mu\nu} + i\epsilon}|k+q) = 2\pi\delta(k_{1}^{-} - k^{-} - q^{-})\Big[(k_{1\perp}|\int_{-\infty}^{\infty} dz^{-}[\infty, z^{-}] \times e^{-i(k^{+} + q^{+} - \frac{p_{\perp}^{2}}{2k_{1}^{-}})z^{-}} + \int_{-\infty}^{\infty} dz^{-}\int_{z^{-}}^{\infty} dz_{1}^{-}[\infty, z_{1}^{-}]\Big\{\frac{1}{2k_{1}^{-}}\sigma^{-k}F_{-k}(z_{1}^{-}) - \frac{iz_{1}^{-}}{2k_{1}^{-}}\{P^{k}, F_{-k}(z_{1}^{-})\} - \frac{z_{1}^{-}}{(2k_{1}^{-})^{2}}[P_{\perp}^{2}, \sigma^{-k}F_{-k}(z_{1}^{-})] + \frac{i}{2k_{1}^{-}}\sigma^{+-}F_{+-}(z_{1}^{-}) + \frac{i}{4k_{1}^{-}}\sigma^{ij}F_{ij}(z_{1}^{-})\Big\}[z_{1}^{-}, z^{-}]e^{-i(k^{+} + q^{+} - \frac{p_{\perp}^{2}}{2k_{1}^{-}})z^{-}}|k_{\perp} + q_{\perp})\Big]$$

$$(18)$$

• Different terms in this equation have different orders of eikonality.

Analyzing the Eikonality of each Insertion

The eikonal entities:

- $[x^-, y^-]$
- $\int dz^{-} \frac{1}{2k_1^{-}} \sigma^{-i} F_{-i}$

The subeikonal entities:

•
$$\int dz^{-} \frac{z^{-}}{2k_{1}^{-}} \{P^{k}, F_{-k}(z^{-})\}$$

•
$$\int dz^{-} \frac{1}{2k_{1}^{-}} \sigma^{-+} F_{-+}(z^{-})$$

•
$$\int dz^{-} \frac{1}{4k_1^{-}} \sigma^{ij} F_{ij}(z^{-})$$

Example

$$\begin{split} [x^{-},y^{-}] &= 1 + i \int_{y^{-}}^{x^{-}} dz^{-} A_{-}(z^{-}) + i^{2} \int_{y^{-}}^{x^{-}} dz_{1}^{-} A_{-}(z_{1}^{-}) \int_{y^{-}}^{z_{1}^{-}} dz_{2}^{-} A_{-}(z_{2}^{-}) + \dots \\ &\sim 1 + i \int_{y^{-}}^{x^{-}} dz^{-} \lambda \tilde{A}_{-}(\lambda z^{-}) + i^{2} \int_{y^{-}}^{x^{-}} dz_{1}^{-} \lambda \tilde{A}_{-}(\lambda z_{1}^{-}) \int_{y^{-}}^{z_{1}^{-}} dz_{2}^{-} \lambda A_{-}(\lambda z_{2}^{-}) + \dots \\ &\sim 1 + i \int_{\tilde{y}^{-}}^{\tilde{x}^{-}} d\tilde{z}^{-} \tilde{A}_{-}(\tilde{z}^{-}) + i^{2} \int_{\tilde{y}^{-}}^{\tilde{x}^{-}} d\tilde{z}_{1}^{-} \tilde{A}_{-}(\tilde{z}_{1}^{-}) \int_{\tilde{y}^{-}}^{\tilde{z}_{1}^{-}} d\tilde{z}_{2}^{-} \tilde{A}_{-}(\tilde{z}_{2}^{-}) + \dots \end{split}$$

• In our technique we observe the appearance of terms like the following.

$$\int_{-\infty}^{\infty} dz^{-}[\infty, z^{-}] e^{-i(k^{+}+q^{+}-\frac{p_{\perp}^{2}}{2k_{1}^{-}})z^{-}}$$
(19)

- No explicit dependence on the finite size of the shockwave!
- This term contains both contribution of eikonal and subeikonal order.

The full propagator

• Separating eikonal and subeikonal terms in our approach we obtain

$$2\pi\delta(k_{1}^{-}-k^{-}-q^{-})\Big[(k_{1\perp}|2\pi\delta(k^{+}+q^{+}-\frac{p_{\perp}^{2}}{2k_{1}^{-}})+([\infty,-\infty]-1)\frac{1}{k^{+}+q^{+}-\frac{p_{\perp}^{2}}{2k_{1}^{-}}} \\ +\int_{-\infty}^{\infty}dz_{1}^{-}[\infty,z_{1}^{-}]\Big\{\frac{1}{2k_{1}^{-}}\sigma^{-k}F_{-k}(z_{1}^{-})\Big\}[z_{1}^{-},-\infty]\frac{i}{k^{+}+q^{+}-\frac{p_{\perp}^{2}}{2k_{1}^{-}}}+\int_{-\infty}^{\infty}dz_{1}^{-}[\infty,z_{1}^{-}]\Big] \\ \Big\{-\frac{iz_{1}^{-}}{2k_{1}^{-}}\{P^{k},F_{-k}(z_{1}^{-})\}-\frac{z_{1}^{-}}{(2k_{1}^{-})^{2}}[P_{\perp}^{2},\sigma^{-k}F_{-k}(z_{1}^{-})]+\frac{i}{2k_{1}^{-}}\sigma^{+-}F_{+-}(z_{1}^{-})+\frac{i}{4k_{1}^{-}}\sigma^{ij}F_{ij}(z_{1}^{-})\Big\} \\ [z_{1}^{-},-\infty]\frac{i}{k^{+}+q^{+}-\frac{p_{\perp}^{2}}{2k_{1}^{-}}}-([\infty,-\infty]-1)\frac{1}{q^{+}-k_{1}^{+}-k_{2}^{+}}+\int_{-\infty}^{\infty}dz^{-}([\infty,z^{-}]-1)e^{-i(q^{+}-k_{1}^{+}-k_{2}^{+})z^{-}} \\ +\int_{-\infty}^{\infty}dz_{1}^{-}[\infty,z_{1}^{-}]\Big\{\frac{1}{2k_{1}^{-}}\sigma^{-k}F_{-k}(z_{1}^{-})\Big\}\Big(\int_{-\infty}^{z_{1}^{-}}dz^{-}[z_{1}^{-},z^{-}]e^{-i(q^{+}-k_{1}^{+}-k_{2}^{+})z^{-}} \\ -[z_{1}^{-},-\infty]\frac{i}{q^{+}-k_{1}^{+}-k_{2}^{+}}\Big)|k_{\perp}+q_{\perp}\Big)\Big]$$

$$(20)$$

- What if we consider the dependence of the fields on x^+ ?
- This can effectively be of subeikonal order.
- The recoil effect on the quark.

$$2\pi\delta(k_1^- - k^- - q^-) \to \int dx^+ e^{i(k_1^- - k^- - q^-)x^+}$$
(21)

The Amplitude

• In terms of the resummed propagators, the amplitude in the background field is

$$i\mathcal{M} = ie \int \frac{d^4k}{(2\pi)^4} \bar{u}(k_1) k_1^2(k_1) \frac{1}{P^2 + \frac{1}{2}\sigma^{\mu\nu}F_{\mu\nu}} |k+q)\gamma^{\mu}(k) \frac{1}{P^2 + \frac{1}{2}\sigma^{\mu\nu}F_{\mu\nu}} |-k_2) k_2^2 v(k_2)\epsilon_{\mu}(q)$$
(22)

Example: The Eikonal Amplitude

• In the amplitude we replace

$$k_{1}^{2}(k_{1}|\frac{1}{P^{2}+\frac{1}{2}\sigma^{\mu\nu}F_{\mu\nu}}|k+q) \rightarrow 2\pi\delta(k_{1}^{-}-k^{-}-q^{-})(k_{1\perp}|\left(([\infty,-\infty]-1)\frac{1}{k^{+}+q^{+}-\frac{p_{\perp}^{2}}{2k_{1}^{-}}}\right) + \int_{-\infty}^{\infty} dz_{1}^{-}[\infty,z_{1}^{-}]\left\{\frac{1}{2k_{1}^{-}}\sigma^{-k}F_{-k}(z_{1}^{-})\right\}[z_{1}^{-},-\infty]\frac{i}{k^{+}+q^{+}-\frac{p_{\perp}^{2}}{2k_{1}^{-}}}\right)|k_{\perp}+q_{\perp})$$

$$(23)$$

• Entire F_{-k} is eikonal.

$$F_{-k} = \partial_{-}A_{k} - \partial_{k}A_{-} - ig[A_{-}, A_{k}]$$

$$\tag{24}$$

• This is mostly replaced by $\partial_i A_-$.

• For the longitudinal polarization of the virtual photon,

$$i\mathcal{M} = -e \int \mathrm{d}^2 z_{\perp} \int \mathrm{d}^2 z'_{\perp} e^{-ik_{1\perp} \cdot z_{\perp}} e^{-ik_{2\perp} \cdot z'_{\perp}} ([\infty, -\infty; z_{\perp}] [-\infty, \infty; z'_{\perp}] - 1)$$

$$\zeta \bar{\zeta} K_0(\varepsilon_f | z'_{\perp} - z_{\perp} |) \bar{u}(k_1) \gamma^- v(k_2) \epsilon_-(q) 2\delta(\zeta + \bar{\zeta} - 1)$$
(25)

For the transverse polarization of the photon:

$$-ie \int d^{2}z_{\perp} \int d^{2}z'_{\perp} e^{-ik_{1\perp} \cdot z_{\perp}} e^{-ik_{2\perp} \cdot z'_{\perp}} 2\pi \delta(k_{1}^{-} + k_{2}^{-} - q^{-}) 2q^{-} \zeta \bar{\zeta} \frac{-i}{2\pi} K_{0}(\varepsilon_{f} | z'_{\perp} - z_{\perp} |) \\ \left([\infty, -\infty; z_{\perp}] [-\infty, \infty; z'_{\perp}] - 1 + \int_{\infty}^{-\infty} dz'_{1}^{-} [\infty, -\infty; z_{\perp}] [-\infty, z'_{1}^{-}; z'_{\perp}] \frac{i}{2k_{2}^{-}} \sigma^{-i} F_{-i}(z'_{1}^{-}, z'_{\perp}) \right) \\ [z'_{1}^{-}, \infty; z'_{\perp}] + \int dz_{1}^{-} [\infty, z_{1}^{-}; z_{\perp}] \frac{i}{2k_{1}^{-}} \sigma^{-i} F_{-i}(z_{1}^{-}, z_{\perp}) [z_{1}^{-}, -\infty; z_{\perp}] [-\infty, \infty; z'_{\perp}] \right) \\ \bar{u}(k_{1}) \gamma^{t} v(k_{2}) \epsilon_{t}(q) \tag{26}$$

The General Eikonal Amplitude (γ_T^*)

$$-i\mathcal{M} = -e \int d^{2}z_{\perp} \int d^{2}z'_{\perp} e^{-ik_{1\perp}.z_{\perp}} e^{-ik_{2\perp}.z'_{\perp}} ([\infty, -\infty; z_{\perp}][-\infty, \infty; z'_{\perp}] - 1)$$

$$\zeta \bar{\zeta} \frac{(z'-z)^{i}}{|z'_{\perp} - z_{\perp}|} K_{1}(\varepsilon_{f}|z'_{\perp} - z_{\perp}|) \bar{u}(k_{1}) \gamma^{-} \frac{q^{-}}{k_{1}^{-}k_{2}^{-}} \left(\frac{(2k_{1}^{-} - q^{-})}{q^{-}} \delta^{it} - \frac{[\gamma^{i}, \gamma^{t}]}{2}\right) v(k_{2})$$

$$\epsilon_{t}(q) \delta(\zeta + \bar{\zeta} - 1)$$
(27)

• However, one should use F_{-k} instead of just the transverse derivative of the Wilson line.

- We calculate all subeikonal amplitudes as well.
- An example of a term in the subeikonal order:

$$i\mathcal{M} = -e \int d^2 z_{\perp} \int d^2 z'_{\perp} \int_{\infty}^{-\infty} dz'_{1} e^{-ik_{1\perp}.z_{\perp}} e^{-ik_{2\perp}.z'_{\perp}} \delta(\zeta + \bar{\zeta} - 1)[\infty, -\infty; z_{\perp}]$$
$$[-\infty, z'_{1}; z'_{\perp}] i\sigma^{ij} F_{ij}(z'_{1}, z'_{\perp})[z'_{1}, \infty; z'_{\perp}] \bar{u}(k_{1})\gamma^{-}v(k_{2})\epsilon_{-}(q) \frac{\zeta}{2q^{-}} K_{0}(\varepsilon_{f}|z'_{\perp} - z_{\perp}|)$$
(28)

- We derive the general structure of operators in subeikonal order in the Regge limit using the background field method.
- We rely solely on the power counting of the background field operators without taking a finite size of the shockwave into account.
- Our basic set of operators differs from the standard eikonal calculations (MV model) and available subeikonal results.
- All terms of F_{-i} are equally important and should be understood as a generalization of $\partial_i U$.
- Our set of operators can be directly connected to the TMDPDF operators.