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Introduction

static potential

→ dominant interaction between heavy q-q̄ at low energy

T = 0

- attractive

- coulomb-like at small r (linearly rising at large r)

T ̸= 0

- the short-distance potential screened

- yukawa-like with screening mass ∝ T

proposed signal for QGP formation:

suppression of heavy q-q̄ bound state production at high T
T. Matsui and H. Satz, Phys. Lett. B 178, 416-422 (1986).
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at LO and in thermal equilibrium:

V (r) from f-transform of 00 thermal gluon propagator in zero frequency limit

Glo(0, p) = −
1

m2
D + p2

+
iπTm2

D

p(p2 +m2
D)

2

ReV1lo(r⃗) = −g2CF

∫
d3p

(2π)3
e i p⃗·r⃗

p2 +m2
D

= −αCF

r
e−mD r

** important idea

if Im[V ] ∼Re[V ] where screening becomes important

→ bound states disappear because decay (become wide resonances)

- not because V is screened (too shallow to support them)

M. Laine, O. Philipsen, P. Romatschke and M. Tassler, JHEP 03, 054 (2007).

Carrington, March 16, 2025 (slide 3 of 20)



Q: what is the scale where we expect this to happen?

propagator: Glo(0, p) = − 1
m2

D+p2 +
iπTm2

D

p(p2+m2
D )

2

if p ∼ gaT then Re[Ṽ1LO(p)] ∼ g2−2a

T 2 and Im[Ṽ1LO(p)] ∼ g4−5a

T 2

for a resonance to exist need Im[Ṽ ] < Re[Ṽ ] ⇒ 0 < a < 2/3

a = 2/3 parametrically scale we expect quarkonium to dissociate
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real time static potential beyond LO in equilibrium

MEC, C. Manuel and J. Soto, Phys. Rev. Lett. 134, 011905 (2025)

we consider p ∼ gaT with 1/2 < a < 2/3 ⇒ mD ≪ p ≪ T

• upper bound on p: from condition ReṼlo(p) ∼ImṼlo(p)

→ bound state decays

• lower bound on p: require p “semi-hard”

- calculation of next-to-leading order potential is simplified

consequences: V (r) valid for r mD ≪ 1≪ rT

motivation

■ a check of the idea of quarkonium dissociation

■ provides wider set of physically motivated forms of the potential

- to use as input for methods to extract V from lattice correlators
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calculational method

• thermalized plasma

• Mq ≫ all other physical scales

→ static qq̄ are (unthermalised) probe particles

• coulomb gauge

• dimensional regularization
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potential obtained from real time QCD (rectangular) wilson loop

t

r W1

W2

W3

W4

(t, r)

(t,0)(0,0)

(0, r)W (t, r) = 1
Nc

〈
Pexp

(
ig

∫
Aµ(z)z

µ
)〉

V (r) = limt→∞
i
t ln[W (t, r)]

in limit t →∞ lines on sides set to 1

qq̄ couple to A0 on 11 branch of CTP contour

LO is the O(g2) term proportional to G00

HTL propagator → yukawa potential
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how to calculate static potential beyond leading order

• expand W to higher order in g

• dress the propagator in the LO contribution

(e)(d)(c)(b)(a)

• iterate the LO potential (not shown)

determine how to dress lines/vertices for p ∼ gaT with 1
2 < a < 2

3
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comment about power counting

calculation of NLO HTL n-point functions

→ follow prescription . . .

for the static potential there are two important differences

1. fermion lines have the form 1
p0±iη (Mq ≫ all other scales)

2. external frequencies are taken to zero

⇒ external momenta don’t flow through the diagram

** power counting is different from standard thermal field theory
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(e)(d)(c)(b)(a)

in (a) we include corrections to HTL self-energy

- power correction to HTL gluon bubble
C. Manuel, J. Soto and S. Stetina, Phys. Rev. D 94, 025017, (2016).

S. Carignano, C. Manuel and J. Soto, Phys. Lett. B, 308, 780 (2018).

- one loop gluon bubble with loop momenta semi-hard
- can be done with bare lines and vertices

- bose-einstein distributions ∼ T/p0 since p ≪ T

- no quark loop (pauli blocking)

Re[V ] in A. K. Rebhan, Phys. Rev. D 48, R3967 (1993)

Im[V ] in J. Q. Zhu, Z. L. Ma, C. Y. Shi and Y. D. Li, Nucl. Phys. A 942, 54-64 (2015)
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diagrams (bcde) = ladder diagrams

- HTL propagators and bare vertices

also: additional contributions from static quark self-energies

→ constant contributions that we have not calculated

- this will be explained below

• we take into account corrections to LO

real part: larger than g2 & imag part: larger than g2−a

• denominators ∼ p2 +m2
D kept unexpanded (damped approximation)

→ extends region that coordinate space potential is valid
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coordinate space potential beyond leading order

r̂ = rmD and mD = gTm̂D

Ij(r̂) =
∫∞
0 dp̂ sin (p̂r̂) (p̂2 + 1)−j

V1lo = −g 2CF

4πr̂
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mDe

−r̂ − 2iT I2(r̂)
)
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g 4NcCFT

64π2 r̂

{
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e−r̂

16
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3π2 − 16 +
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6
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iIm[Vnlo] = −i

g 3CF T

16π2m̂D
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3π2 − 16

32 r̂
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}
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soft contributions

want to include contributions from p ∼ mD that we haven’t calculated

- since pr ∼ mDr ∼ g1−a < 1 → can expand the exponential

Vsoft(r) =

∫
d3p

(2π)3

(
1 + i p⃗ · r⃗ − 1

2
(p⃗ · r⃗)2 + · · ·

)
Ṽ (p)

keep terms that are ≥ smallest contributions in analytic result

odd powers zero by symmetry in an isotropic system

• add contributions:

Re[V ] = C + g3q0T

Im[V ] = g3i0T + g5i2r
2T 3

coefficients obtained by fitting to lattice results

C is a global constant that adjusts the origins of the energies

Carrington, March 16, 2025 (slide 14 of 20)



NOTES

1. can verify constants have correct form to absorb infrared

poles in the fourier transform of the expanded potential

idea: 1
p2+m2

D
→ 1

p2
− m2

D
p4

. . .

2. recall: heavy q self-energy contributions not calculated

- they are absorbed into the fitted constants

3. we considered bottomonium M = 4676 MeV

Carrington, March 16, 2025 (slide 15 of 20)



lattice calculation: A. Bazavov, D. Hoying, O. Kaczmarek, R. N. Larsen, S. Mukherjee, P. Petreczky, A. Rothkopf

and J. H. Weber, [arXiv:2308.16587 [hep-lat]].

use g = 1.8 from fit to T = 0 lattice data with r ∈ (0.0, 0.3) fm

find (C , q0, i0, i2) with fit to all available T and r ∈ (0.02, 0.3) fm

• real part of potential varies little with T (like data)

• imaginary part gets big contro from soft region

– solid bands are uncertainties in fitted coefficients inherited from lattice data
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lattice calculation: R. Larsen, S. Meinel, S. Mukherjee and P. Petreczky, Phys. Lett. B 800, 135119 (2020).

solve the schrödinger equation using our result for Re[V ]

→ binding energies and Γ = −⟨Im[V ]⟩
find soft coefficients by fitting to all available temperatures

- error bars from fitting to upper/lower values
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⇒ reasonable description of data for both E-bind and Γ
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fitted soft contribution

recall: contribution to V (r) from p ∼ mD

Re[V ] = C + g3q0T

Im[V ] = g3i0T + g5i2r
2T 3

find values of coefficients by fitting to 2 sets of lattice data

in our calculation all scales are explicit

→ expect same size for numerical coefficients from the two fits

(q0, i0, i2) = (0.049, −0.021± 0.002, 0.205± 0.001)

(q0, i0, i2) = (0.078±−0.004,−0.026± 0.009, 0.053± 0.002)

i2 from the first fit is significantly larger

C=219 MeV from first calculation

in second the coulomb binding energy is subtracted (C plays no role)
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dissociation:

- bound states disappear because decay (become wide resonances)

- not because V is screened too shallow to support them

Tdiss ≈ temperature where ground state Ebind = Γ = −2⟨ImV ⟩
- define Ebind as eigenvalue of V with threshold set to 0

lo result: Tdiss = 193.2 MeV

nlo result: Tdiss = 151.8± 1.2 MeV ← using first fit

** outlying result for i2

nlo result: Tdiss = 225± 10 MeV ← using second fit
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conclusions

• calculated beyond-lo corrections to momentum space potential

- when the typical momentum transfer p satisfies mD ≪ p ≪ T

- relevant region to obtain dissociation T for heavy quarkonium

• we include soft contributions p ≲ mD

- have universal form because we can expand exponential in f-transform

- coefficients from fitting to lattice data

• reasonable description of lattice data (LO fails)

- identify an inconsistency between 2 different sets of lattice data

• results provide useful inputs for the Bayesian methods required in

the effort to determine the potential from euclidean lattice data
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