Transverse Single-Spin Asymmetries in Inclusive DIS and SIDIS Production of Photons: Numerical Predictions using Models for Multi-Parton Correlators

Michael Harris Lebanon Valley College, Annville, PA, USA

supported by NSF Grant No. PHY-2308567

in collaboration with Jacob Marsh, Daniel Pitonyak, Jack Putnam (Lebanon Valley College), Alexei Prokudin (Penn State Berks) Daniel Rein, Marc Schlegel (University of Tübingen)

GHP Workshop 2025

Motivation and Background

- A_{UT} transverse single-spin asymmetry (TSSA) for the scattering of an unpolarized electron off a transversely polarized nucleon
- We focus on the process of semi-inclusive DIS (SIDIS) with a photon detected in the final state (γSIDIS)
- This process is unique in that it gives us direct sensitivity to quark-gluon-quark correlators point-by-point on the full support of the momentum fractions x, x'
- The future EIC may be able to provide unprecedented information on these correlators, if the γSIDIS TSSA is sizeable

$$A_{UT} \equiv \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

• The γ SIDIS cross section depends on the center-of-mass collision energy (\sqrt{s}), transverse momenta of the scattered electron and produced photon (p'_T , p^{γ}_T), the rapidities of the scattered electron and produced photon (η' , η^{γ}), and the azimuthal angles of the transverse momenta of the scattered electron and produced photon (ϕ' , ϕ^{γ})

γ SIDIS cross section formula for $d\sigma_{UU}$

$$\frac{d\sigma_{UU}}{dp'_{T}d\eta' d\phi' dp_{T}^{\gamma} d\eta^{\gamma} d\phi^{\gamma}} = \frac{\alpha_{em}^{3}}{4\pi^{2} s Q^{4}} p'_{T} p_{T}^{\gamma} \sum_{n=BH,C,I} \hat{\sigma}_{UU}^{n} f_{1}^{n}(x_{B},\mu_{n})$$
BH = Bethe-Heitler – square of diagrams where photon is radiated off the lepton
C = Compton – square of diagrams where photon is radiated off the quark
I = Interference – diagrams where the photon is radiated off the lepton and quark
$$f^{BH} \equiv \sum_{q=u,d,s} e_{q}^{2} \left(f^{q} + f^{\bar{q}}\right), \quad f^{C} \equiv \sum_{q=u,d,s} e_{q}^{4} \left(f^{q} + f^{\bar{q}}\right), \quad f^{I} \equiv \sum_{q=u,d,s} e_{q}^{3} \left(f^{q} - f^{\bar{q}}\right)$$
Relevant kinematic variables: $s = (P+l)^{2}, \quad Q^{2} = -(l-l'-P_{\gamma})^{2}, \quad \tilde{Q}^{2} = -(l-l')^{2}, \quad x_{B} = \frac{Q^{2}}{2P \cdot q}, \quad \tilde{x}_{B} = \frac{\tilde{Q}^{2}}{2P \cdot q}$
Partonic description is valid if $Q^{2} \gg M^{2}, \quad Q^{2} \gg M^{2}, \quad Q^{2} = \tilde{Q}^{2} \gg M^{2}$ (Brodsky, Gunion, Jaffe (1972))
Scale choices in the PDFs: $\mu_{BH} = Q, \quad \mu_{C} = \tilde{Q}, \quad \mu_{I} = \sqrt{Q\tilde{Q}}$

 γ SIDIS cross section formula for $d\sigma_{UT}$

$$\frac{d\sigma_{UT}}{dp'_{T}d\eta'd\phi'dp^{\gamma}_{T}d\eta^{\gamma}d\phi^{\gamma}} = \frac{\alpha^{3}_{em}}{4\pi^{2}sQ^{4}}p'_{T}p^{\gamma}_{T}\left[\frac{\pi M\epsilon^{Pll'S}}{Q^{4}}\sigma^{\phi'}_{UT} + \frac{\pi M\epsilon^{PlP_{\gamma}S}}{Q^{4}}\sigma^{\phi_{\gamma}}_{UT}\right]$$
where $\sigma^{\phi'}_{UT} = \sum_{n=C,I} \left[\hat{\sigma}^{n,\phi'}_{HP,F}F^{n}_{FT}(x_{B},\tilde{x}_{B},\mu_{n}) + \hat{\sigma}^{n,\phi'}_{SFP,F}F^{n}_{FT}(x_{B},0,\mu_{n}) + \hat{\sigma}^{n,\phi'}_{SFP,G}G^{n}_{FT}(x_{B},0,\mu_{n})\right]$

$$+ \hat{\sigma}^{n,\phi'}_{HP,F}G^{n}_{FT}(x_{B},\tilde{x}_{B},\mu_{n}) + \hat{\sigma}^{n,\phi'}_{SFP,F}F^{n}_{FT}(x_{B},0,\mu_{n})\right]$$

$$\phi^{\phi_{\gamma}}_{UT} = \sum_{n=C,I} \left[\hat{\sigma}^{n,\phi_{\gamma}}_{HP,F}F^{n}_{T}(x_{B},\tilde{x}_{B},\mu_{n}) + \hat{\sigma}^{n,\phi_{\gamma}}_{SFP,F}F^{n}_{FT}(x_{B},0,\mu_{n}) + \hat{\sigma}^{n,\phi_{\gamma}}_{SFP,F}G^{n}_{FT}(x_{B},0,\mu_{n}) + \hat{\sigma}^{n,\phi_{\gamma}}_{SFP,F}G^{n}_{FT}(x_{B},0,\mu_{n})\right]$$

 F_{FT} and G_{FT} are quark-gluon-quark correlators that can be probed point-by-point on the full support x, x', which is an unprecedented feature of this observable

W. Albaltan, A. Prokudin, M. Schlegel, Phys. Lett. B 804, 135367 (2020)

Theoretical Input Properties of quark-gluon-quark correlators F_{FT} and G_{FT}

$$F_{FT}(x, x') = F_{FT}(x', x) \qquad F_{FT}^{\bar{q}}(x, x') = F_{FT}^{q}(-x', -x)$$
$$G_{FT}(x, x') = -G_{FT}(x', x) \qquad G_{FT}^{\bar{q}}(x, x') = -G_{FT}^{q}(-x', -x)$$

x and x' are the momentum fractions of the nucleon momentum carried by the quarks

$$\pi F_{FT}^{q}(x,x) = f_{1T}^{\perp(1),q}(x)$$

Support for the functions is on

 $|x| \le 1, |x'| \le 1, |x - x'| \le 1$

Note: f_{1T}^{\perp} is the Sivers TMD PDF (use JAM3D-22), which is the probability of finding an unpolarized quark inside a transversely polarized nucleon

Models for quark-gluon-quark correlators F_{FT} and G_{FT} - Fourier expansion

$$\begin{split} F_{FT}^{q}(x,x') &= \left\{ \frac{1}{2\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \left[1 + \sum_{n=1}^{3} [a_{2n}^{q}(\cos(2n\phi) - 1)] \right] \\ &+ \frac{1}{2\pi} f_{1T}^{\perp(1),q-\bar{q}}(r/\sqrt{2}) \left[\cos(\phi) + \sum_{n=1}^{3} [a_{2n+1}^{q}(\cos((2n+1)\phi) - \cos(\phi))] \right] \right\} e(x,x') \end{split} \\ \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') \\ -\frac{1}{\pi} e^{\pi(x,x')} &= \left\{ -\frac{1}{\pi} f_{1T}^{\perp(1),q+\bar{q}}(r/\sqrt{2}) \sum_{n=1}^{6} [b_{n}^{q}\sin(n\phi)] \right\} e(x,x') \\ \hline H_{2\pi}^{q}(x,x') \\ -\frac{1}{\pi} e^{\pi(x,x')} \\ -\frac{1}{\pi} e^{$$

Assumptions:

- all Fourier coefficients a_n and b_n are constants (independent of r)
- all Fourier coefficients a_n for $n \ge 8$ and b_n for $n \ge 7$ vanish
- f_{1T}^{\perp} sets the size of F_{FT} and G_{FT}

Models for quark-gluon-quark correlators F_{FT} and G_{FT} - Lattice QCD constraint

 $\boldsymbol{a^q} = (a_2^q, a_4^q, a_6^q; a_3^q, a_5^q, a_7^q)$ $\boldsymbol{b^q} = (b_1^q, b_2^q, b_3^q, b_4^q, b_5^q, b_6^q)$

There is no experimental data to constrain these parameters, but lattice QCD has calculated the d_2 matrix element for u and d quarks:

$$d_{2}^{q} = -\int_{-1}^{1} dx \int_{-1}^{1} dx' F_{FT}^{q}(x, x') \qquad \qquad d_{2}^{u} = 0.026(4)(13) \\ d_{2}^{d} = -0.0086(26)(146) \int_{-1}^{1} dx' F_{FT}^{q}(x, x') \qquad \qquad d_{2}^{d} = -0.0086(26)(146) \int_{-1}^{1} dx' F_{FT}^{q}(x, x')$$

These values can be used to constrain a_2 once values are chosen for $a_{4,6,3,5,7}$:

$$a_{2}^{q} = \left(d_{2}^{q} - \left(A_{0}^{q} + A_{4}^{q}a_{4}^{q} + A_{6}^{q}a_{6}^{q} + A_{3}^{q}a_{3}^{q} + A_{5}^{q}a_{5}^{q} + A_{7}^{q}a_{7}^{q}\right)\right)/A_{2}^{q}$$
where $A_{0}^{q} \equiv -\int_{-1}^{1} dx \int_{-1}^{1} dx' F_{FT}^{q}(x, x') \Big|_{a^{q}=0}, \qquad A_{i}^{q} \equiv -A_{0}^{q} - \int_{-1}^{1} dx \int_{-1}^{1} dx' F_{FT}^{q}(x, x') \Big|_{a_{i}^{q}=1, a_{j\neq i}^{q}=0}$

Note that we also fix $b_1 = -a_2$.

Interior OCD reculte

Theoretical Input Models for quark-gluon-quark correlators F_{FT} and G_{FT} - "Scenario O"

 $a^{u} = (-0.2691, 0, 0; 0, 0, 0), \quad a^{d} = (0.7822, 0, 0; 0, 0, 0), \quad b^{u} = (0, 0, 0, 0, 0, 0), \quad b^{d} = (0, 0, 0, 0, 0, 0)$

Models for quark-gluon-quark correlators F_{FT} and G_{FT} - "Scenario 1"

$$a^{u} = (1.1585, -\frac{2}{3}, -\frac{2}{3}; -\frac{1}{3}, -1, -\frac{1}{3}), \quad a^{d} = (-0.6658, \frac{2}{3}, \frac{2}{3}; \frac{1}{3}, 1, \frac{1}{3})$$

Theoretical Input Models for quark-gluon-quark correlators F_{FT} and G_{FT} - "Scenario 1"

$$\boldsymbol{b^{u}} = (-1.1585, \frac{1}{3}, \frac{2}{3}, 1, \frac{2}{3}, \frac{1}{3}), \quad \boldsymbol{b^{d}} = (0.6658, -\frac{1}{3}, -\frac{2}{3}, -1, -\frac{2}{3}, -\frac{1}{3})$$

 $A_{UT} \text{ vs. } (p'_T, \eta', p^{\gamma}_T, \eta^{\gamma})$ with $\phi' = \phi^{\gamma} = 0$ for Electron-Ion Collider $(\sqrt{S} = 29 \text{ GeV})$ F_{FT}/G_{FT} Model Scenario 0

11

 $A_{UT} \text{ vs. } (p'_T, \eta', p^{\gamma}_T, \eta^{\gamma})$ with $\phi' = \phi^{\gamma} = 0$ for Electron-Ion Collider $(\sqrt{S} = 29 \text{ GeV})$ F_{FT}/G_{FT} Model Scenario 1

 $\begin{array}{l} A_{\rm UT} \, {\rm vs.} \, (p_T', \eta', p_T^\gamma, \eta^\gamma) \\ {\rm with} \, \phi' = 0, \phi^\gamma = \pi \\ {\rm for \ Electron-Ion \ Collider} \\ (\sqrt{S} = 29 \ {\rm GeV}) \\ {\rm F_{\rm FT}}/{\rm G_{\rm FT} \ Model \ Scenario \ 1} \end{array}$

 $\begin{array}{l} A_{\rm UT} \, {\rm vs.} \, (p_T', \eta', p_T^\gamma, \eta^\gamma) \\ {\rm with} \, \phi' = \phi^\gamma = 0 \\ {\rm for \ Electron-Ion \ Collider} \\ (\sqrt{S} = 141 \ {\rm GeV}) \\ {\rm F}_{\rm FT}/{\rm G}_{\rm FT} \ {\rm Model \ Scenario \ 1} \end{array}$

- At the low-energy EIC configuration ($\sqrt{S} = 29$ GeV), the asymmetry has the largest values (~10% or more) when the following kinematic criteria are satisfied:
 - ✓ outgoing electron is at mid or backward rapidity
 - ✓ photon is at mid to forward rapidity
 - ✓ smaller electron transverse momentum
 - ✓ higher photon transverse momentum
 - \checkmark electron and photon are produced at azimuthal angles of 0 or π
- At the high-energy EIC configuration ($\sqrt{S} = 141$ GeV), the asymmetry has the largest values (~10% or more) when the following kinematic criteria are satisfied:
 - ✓ outgoing electron and photon are at forward rapidity
 - ✓ small electron transverse momentum
 - ✓ higher photon transverse momentum
 - \checkmark electron and photon are produced at azimuthal angles of 0 or π

And the product of the transversity PDF (use JAM3D-22)
And the transversity PDF (use JAM3D-22)

$$\begin{aligned}
\mathbf{A}_{UT}^{T} Inclusive DIS cross section formula for d \sigma_{UT} \\
\mathbf{A}_{UT}^{T} = -|S_{T}|\sin(\phi_{S}) \frac{4\alpha_{EM}^{3}}{yQ^{4}} \frac{M}{Q} \frac{x_{B}y}{\sqrt{1-y}} \\
\mathbf{A}_{S} = -|S_{T}|\sin(\phi_{S}) \frac{4\alpha_{EM}^{3}}{M} \frac{M}{Q} \frac{x_{B}y}{\sqrt{1-y}} \\
\mathbf{A}_{S} = -|S_{T}|\sin(\phi_{S}) \frac{4\alpha_{EM}^{3}}{M} \frac{M}{Q} \frac{x_{B}y}{\sqrt{1-y}} \\
\mathbf{A}_{S} = -|S_{T}|\sin(\phi_{S}) \frac{4\alpha_{EM}^{3}}{M} \frac{M}{Q} \frac{x_{B}y}{\sqrt{1-y}} \\
\mathbf{A}_{S} = -\frac{2\alpha_{EM}}{3\pi C_{F}} \frac{1}{f_{T}}^{11/(s)}(x)}, \quad F_{TT}^{1/(s)}(x) = \frac{4\alpha_{EM}}{3\pi C_{F}} \frac{1}{f_{T}}^{11/(s)}(x)} \\
\mathbf{A}_{S} = -\frac{2\alpha_{EM}}{3\pi C_{F}} \frac{1}{f_{T}}^{11/(s)}(x)}, \quad F_{TT}^{1/(s)}(x) = \frac{4\alpha_{EM}}{3\pi C_{F}} \frac{1}{f_{T}}^{11/(s)}(x)} \\
\mathbf{A}_{S} = -\frac{2\alpha_{EM}}{3\pi C_{F}} \frac{1}{f_{T}}^{11/(s)}(x)}, \quad F_{TT}^{1/(s)}(x) = \frac{4\alpha_{EM}}{3\pi C_{F}} \frac{1}{f_{T}}^{11/(s)}(x)} \\
\mathbf{A}_{S} = -\frac{2\alpha_{EM}}{3\pi C_{F}} \frac{1}{f_{T}}^{11/(s)}(x)} \\
\mathbf{A}_{S} = -\frac{$$

A_{UT} vs. x for HERMES

- Predicted asymmetry consistent with HERMES measurement of a zero A_{UT}
- Theoretical calculation does go negative somewhat near higher momentum fractions
- Still within range of errors of the measurement
- Quark-photon-quark term seems to be main cause of the asymmetry

A_{UT} vs. x for JLab Data

- The theoretical result when compared to JLab slightly undershoot the data at intermediate *x*
- Overall, it is in line with the magnitude and sign of the asymmetry

Conclusions and Outlook

- We have numerically computed A_{UT} for γ SIDIS by modeling quark-gluon-quark correlators with reasonable assumptions, using input from the Sivers function and a lattice QCD calculation of d_2
- We have determined which kinematic regions A_{UT} for γ SIDIS may be sizeable (~10% of more) at the future Electron-Ion Collider
- The theoretical calculation of A_{UT} for inclusive DIS describes relatively well the experimental data from HERMES and JLab
- Our research highlights the necessity of measuring these observables in order to extract information on quark-gluon-quark correlations in the nucleon, which remain basically unknown