Probing Hadronization Dynamics via Λ SIDIS Production off Nuclei

11th Workshop of the APS Topical Group on Hadronic Physics

March 14th, 2025

Uditha Weerasinghe

Mississippi State University

On behalf of the CLAS Collaboration

Outline

(Semi-Inclusive Deep Inelastic Scattering Production	
	 SIDIS Kinematics and Cuts 	
(Physics Observables	
(Results from Previous Experiments	
	 Hadronization: HERMES Results 	
	Lambda Production: CLAS6 Results	
(New CLAS12 Run Group E Experiments	
	 Online RG-E Multiplicity Ratios 	
	Particle Identification	
	 Vertex Distributions 	
	 Lambda Production Channel 	
	 Background Subtraction 	
(Summary and Outlook	

SIDIS Production

- Studying hadronization processes in SIDIS production helps improve our understanding of the strong interactions dynamics in terms of quarks and gluons, the building blocks of atomic nuclei
- Hadronization process is characterized by two time-distance scales
 - Production time (τ_p): Struck quark propagates as a colored object during the neutralization stage
 - Formation time (τ_f): Time needed for the color-neutral prehadron to evolve into a fully dressed hadron

SIDIS Kinematics and Cuts

- The study of hadronization dynamics is probed in the SIDIS regime using this set of kinematics and cuts:
 - ν: electron energy loss or initial energy of a struck quark
 - Q²: four-momentum transferred squared
 - $Q^2 > 1 \text{ GeV}^2$: to probe the intrinsic structure of nucleons
 - $y = \frac{v}{E_{beam}}$: electron energy fraction transferred to a struck quark
 - y < 0.85: to reduce radiative effects based on former HERMES studies
 - $W = \sqrt{M_n^2 + 2\nu M_n Q^2}$: total mass of the hadronic final state, where M_n is the nucleon mass
 - W > 2 GeV: to avoid contamination from the resonance region
 - $z_h = {}^{E_h}/_{\nu}$: struck quark's initial energy fraction carried by the formed hadron
 - p_T : hadron transverse momentum measured with regard to the virtual photon direction

Multiplicity Ratio

Transverse Momentum Broadening

$$R_{A} = \frac{\frac{N_{SIDIS}^{h(A)}}{N_{DIS}^{e(A)}}}{\frac{N_{SIDIS}^{h(LD_{2})}}{N_{SIDIS}^{h(LD_{2})}}}$$

 $R_{\rm A}$ describes the attenuation of formed hadrons in the medium

$$\Delta p_T^2 = \left< p_T^2 \right>_A - \left< p_T^2 \right>_{LD_2}$$

 Δp_T^2 is due to the energy loss of the propagating struck quark, or the elastic and/or inelastic scattering of prehadrons and hadrons

A

E

Hadronization: HERMES Results

Uditha Weerasinghe - APS GHP 2025 March 14, 2025

Lambda Production: CLAS6 Results

T. Chetry, L. El Fassi, CLAS Collaboration (2023)

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- 4 🗗 ▶

∢ ⊒ ▶

王

New CLAS12 Run Group E Experiments

- RG-E experiments collected data in spring of 2024 using the CLAS12 detector housed in Hall B at Jefferson Lab
- A double target assembly consisting of liquid deuterium and solid foil targets was placed at the center of the solenoid magnet

Uditha Weerasinghe - APS GHP 2025 March 14, 2025

) Q (~

Online RG-E Multiplicity Ratios

Particle Identification

- Particle ID:
 - Electron: +11
 - (+/-) pions: (+/-) 211
 - Proton: +2212
- Detectors cuts:
 - Electron should be in the forward region
 - Pions and protons are either in the forward or central region
- **Fit quality cut:**
 - 3 σ cuts on the χ² of reconstructed tracks

Electron Transverse Vertex Distributions

Sector-independent vertex cuts are used to improve RG-E target separation after completing the alignment

▲□▶ ▲□▶

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< ∃ >

Ξ.

Ξ

Electron z-Vertex Distribution

Uditha Weerasinghe - APS GHP 2025 March 14, 2025

 $\mathcal{O} \mathcal{Q} (\mathcal{P})$

E.

Pion z-Vertex Distribution

Uditha Weerasinghe - APS GHP 2025 March 14, 2025

 $\mathcal{O} \mathcal{Q} (\mathcal{P})$

E.

Proton z-Vertex Distribution

Uditha Weerasinghe - APS GHP 2025 March 14, 2025

 $\mathcal{O} \mathcal{Q} (\mathcal{P})$

E.

Lambda Production Channel

- Our channel of interest is Lambda SIDIS production off nuclei
- A Lambda is identified through its decay daughter particles, proton and π-, detected in coincidence with the scattered electron
- Cuts applied on secondary vertex to refine the Lambda signal
 - Distance between the electron and secondary Lambda vertex
 - Opening angle between protons and π⁻s
 - Studying cut on cos(α*)

(for the second second

Invariant Mass Distribution from LD2

Ongoing $cos(\alpha^*)$ Cut Studies

It is expected that the combinatorial background could be further fine-tuned by applying a cut on $\cos(\alpha^*)$

CUTS:VTX Y U.U, VTZ U.U U.

Liquid H₂ dataset

Ongoing $\cos(\alpha^*)$ Cut Studies

* It is expected that the combinatorial background could be further fine-tuned by applying a cut on $\cos(\alpha^*)$

Ongoing $cos(\alpha^*)$ Cut Studies

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Ξ

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶

Event Mixing for Background Subtraction

- Event mixing technique proved to be effective in modelling the background in the Λ invariant mass for CLAS6 EG2 data
- Each correlated event protons and pions pairs are mixed, respectively, with pions and protons from uncorrelated events to model the combinatorial background underneath the Λ peak

< □ ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- Efforts to calibrate the collected CLAS12 RG-E dataset are ongoing
- Analysis codes are under development to
 - improve particle identification, vertex cuts and corrections
 - polish the Lambda signal using secondary vertex cuts, and possible cuts on $cos(\alpha^*)$
 - improve the event mixing algorithm for the background subtraction underneath the Lambda peak
 - extract the Lambda preliminary results for multiplicity ratios and transverse momentum broadening

Thank You!

This work is supported in part by the U.S. DOE award #: DE-FG02-07ER41528