

Spin physics highlights from PHENIX

Devon Loomis, for the PHENIX collaboration

The 11th workshop of the APS Topical Group on Hadronic Physics, Anaheim, CA, March 14-16, 2025

Outline

- 1. Introduction to longitudinal and transverse spin physics in hadronic collisions
- 2. PHENIX detector overview
- 3. Longitudinal spin results
- 4. Transverse spin results
- 5. Nuclear effects in transverse spin

2

Gluon helicity with hadronic collisions

 \Box Quark helicity contribution constrained by polarized DIS ~ 0.3

□ Longitudinally-polarized proton collisions provide leading order access to ∆g through longitudinal double spin asymmetries RHIC

 $\int_{0.05}^{1.0} dx \Delta g(x) = 0.218 \pm 0.027$

3

Transverse single spin asymmetries (TSSA)

- □ Transverse single spin asymmetries measure the left-right asymmetry of particle production in p[↑] + p collisions
- $\hfill \Box$ Large asymmetries at high x_F observed up to high \sqrt{s}
- \Box Collinear leading twist pQCD predicts the asymmetry $A_N = \alpha_s m_q / \sqrt{s} \sim 0$
- Origin of A_N: Nonperturbative spin-momentum correlations described by
 Transverse Momentum Dependent (TMD) PDFs/FFs
 - □ Collinear twist-3 multiparton correlators

arXiv:1602.03922

5

Polarized physics at **PH*ENIX**

Relativistic Heavy Ion Collider (RHIC)

Absolute Polarimeter (H ¹ jet) RHIC pC Polarimeters	Year	System	\sqrt{s} (GeV)	Polarization	Recorded Luminosity (pb ⁻¹)
Siberian Snakes Siberian Snakes	2006	p+p	62.4 200	transverse longitudinal transverse longitudinal	0.02 0.08 2.7 7.5
<u>PHENIX</u>	2008	p+p	200	transverse	5.2
Spin Rotators	2009	p+p	200 500	longitudinal	16 14
Pol. H ⁻ Source _ Spin Rotators	2011	p+p	500	longitudinal	18
LINAC BOOSTER Helical Partial Siberian Snake	2012	p+p	200 510	transverse longitudinal	9.7 32
200 MeV Polarimeter	2013	p+p	510	longitudinal	155
AGS pC Polarimeter Strong AGS Snake RHIC is the only collider in the world that can	2015	p+p p+Al p+Au	200	transverse	60 1.27 3.97

RHIC is the only collider in the world that can provide high energy <u>polarized</u> proton beams

 \Box Central arms - $|\eta| < 0.35$, $\pi/2$ azimuthal coverage per arm

- **D** PbSc and PbGl EMCal (e, γ)
- **Gas Ring Imaging Cherenkov Detector (RICH)** (e, π ,K PID)
- Drift/Pad chambers
- \Box Muon arms 1.2 < $|\eta|$ < 2.4
 - **U** Muon ID
 - Muon Tracker
- □ Forward $3.1 < |\eta| < 3.9$
 - □ Beam beam counter (collision/luminosity)
 - \Box Muon Piston Calorimeter full azimuth forward EMCal (e, γ)
- **\Box** Far forward $|\eta| > 6.8$
 - □ Zero-degree calorimeter HCal (luminosity,local polarimetry)

Longitudinal Spin Results

Devon Loomis | Spin physics highlights from PHENIX | GHP 2025

3/16/25

Direct photon A_{LL}

□ JAM collaboration: ambiguity on sign of Δg ? PRD105, 074022 (2022) □ BUT negative Δg leads to negative cross sections PRD109, 074007 (2024)

□ Direct photons dominated by qg compton scattering

 $\hfill\square$ Sensitive to sign of Δg

 \Box Negative solution disfavored at 2.8 σ

M

M

3/16/25 11

Transverse Spin Results

Direct photon A_N

 \Box Photon in final state \rightarrow no final state color effects

□ Clean probe of initial state quark-gluon and trigluon correlation functions

 \Box First direct photon A_N from RHIC \rightarrow 50 times reduced uncertainties from Fermilab E704

PLB 345, 569 (1995)

Midrapidity π^0 , ηA_N

- Sensitive to gluon dynamics through quark-gluon and trigluon correlation functions
 Used to constrain gluon Sivers TMD JHEP 1509 (2015), 119
- □ High precision measurement: consistent with zero to sub-percent level

λ_r [GeV]

Midrapidity open heavy flavor A_N

□ Direct sensitivity to initial-state trigluon correlator

Gluon-gluon fusion

□ Zero gluon transversity in spin ¹/₂ nucleons

 \Box First constraints on phenomenological trigluon parameters λ , K_G

PRD 107, 052012 (2023)

M

Forward h[±], η A_N

Devon Loomis | Spin physics highlights from PHENIX | GHP 2025

3/16/25 17

Midrapidity π^0 , ηA_N

- □ Consistent results in all collision systems
- High precision measurements of p[↑]+p, p[↑]+Al, p[↑]+Au
 all consistent with zero

Forward $h^{\pm} A_N$

0.2

0.2

Far forward neutron A_N

- □ Negative A_N in far forward neutrons from p+p well described by one pion exchange (OPE) model
- □ Initially unexpected large dependence on *A* (+ sign change)
 - □ Additional contribution from ultra-peripheral collisions (UPC) qualitatively describes data

Weak x_F dependence

Summary

□ PHENIX has had a long and successful spin physics program

- 20 years of exploration into longitudinal and transverse spin asymmetries has advanced our understanding of hadronic spin structure and dynamics
- \Box Final measurements will investigate Δg at low-x:

 \Box Midrapidity η A_{LL} 510 GeV

□ Forward rapidity cluster A_{LL} 510 GeV

- □ Additional interesting RHIC spin physics on the way
 - **STAR** Forward Upgrade
 - □ First sPHENIX spin data

