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Introduction and Background

e The gluon parton distribution function (PDF) provides important input to high energy
experiments, such as Higgs production and J/y photo-production
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Phenomenological (pheno.) studies of the gluon PDF have some difficulties in

obtaining the PDF in the “large”-x region because of limited data
o  Future experiments such as EIC, EicC, COMPASS++, and AMBER will

help reveal more information about the gluon PDFs 9 .
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| will present MSULat’s recent work in illuminating the gluonic a R

structure of the nucleon and pion
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Lattice QCD
LQCD is just QCD in discrete 4D Euclidean space-time
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Over the past decade two new theoretical approaches to obtaining PDFs from

the lattice have been developed and implemented successfully

o Large momentum Effective Theory (LaMET or quasi-PDF) and the pseudo-PDF approach
o Because of limited signal at long distances, the pseudo-PDF approach has been much more

successful for gluon PDFs than LaMET, but we're interested in Ji, PRL 110:262002 (2013).
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We find good agreement between
the lattice and the pheno. results in
the large-x region, but we still want
to reduce the errors
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e \We recently calculated pion gluon momentum fractions (z), and multiplied them
through the normalized pion PDFs “%) from our previous pion gluon PDF study

X
< >g Z. Fan, et al. PLB 823:136778 (2021)

e \We find that the lattice spacing dependence is minimal, and that we are in good
agreement with the available pheno. and theoretical QCD models

i | | | o (a12m220)
B a~0.12 fm, M;~310 MeV o JAM'21
0.6 £ a~0.15 fm, M;~310 MeV S VAR = xFitter'20
N
£ E Cui, et al. EPJC 80:1064 2020
< 0.4f X 0.4/ Berry, et al. PRL 127:232001 2021 ]
§ S Novikov, et al. PRD 102:014040, 2020
x
0.2/ 0.2}
0.0t ‘ L : : 0 yoepee
0.0 0.2 0.4 0.6 0.8 1.0 '8.0 0.2 04 0.6 0.8 1.0
X X

6/16



Outline

ll.
V.

Introduction

Continuum Physical Studies of the Pion and Nucleon Gluon PDFs
Improving the JAM Pion PDF Global fit with Lattice Gluon Data
LaMET for the Gluon PDF and Future Signal Improvement

Conclusion



J. Conway, et al. PRD, 39, p. 92-122, 1989.
B. Betev, et al. Z. Phys. C, 28, p. 9-14, 1985
S. Chekanov, et al. NPB, 637, p. 3-56, 2002.

Motivation: Experimental Data F. Aaron, et al. Eur. Phys. J. C, 68, p. 381-399, 2010.

The experimental data in the
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Overall Methodology
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e Start with the prior PDFs and fit framework from P. C. Barry, et al., PRL
127:232001 (2021) (we call this fit “DY+LN")
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Lattice Data

e \We use the a12m310 lattice ensemble with a high level of statistics

T s =1 ensemble | al2m310 (310 MeV)
&> e H ++ ‘ : = a (fm) 0.1207(11)
: . + + | $ B FRT 247 x 64
. + + . g My (MeV) 309.0(11)
IIT i H ) ,' | » o z (fm) [0.36,1.08]
L o2 } L ? s Netg 1013
g ' | Ra Miticss 1,296,640

—0.2 A ? ®

-0.4

0 2 4 I/é é 10 12

9/16



Lattice Data

1.0

0.8

0.6

0.4

0.2 1

We use the a12m310 lattice ensemble with a high level of statistics

"'I?'

b B R R B K R R

z=1
z=2
z=3
z=4
z=5
z=6
z=7
z=8
z=9

» data points

ensemble | al2m310 (310 MeV)
a (fm) 0.1207(11)
PxT 243 x 64
MY (MeV) 309.0(11)
z (fm) [0.36, 1.08]
Nete 1013
. 1,296,640
We cut out 2= 1a and 2a as they have strong
discretization effects. This leaves 35 lattice

9/16



Lattice Data

e \We use the a12m310 lattice ensemble with a high level of statistics

1‘°"';:~ ¢ =1 ensemble | a12m310 (310 MeV)
o~ oo + 3 = a (fm) 0.1207(11)
y T + o EPRT 24° x 64
; ¢ z=s M2 (MeV) 309.0(11)
N 047 + & o z (fm) [0.36,1.08]
’ P b z=9 T
e ’ } Nete 1013
S/ N . 1,296,640
5 Y | 3
0.2 " We cut out 2= 1a and 2a as they have strong
04 discretization effects. This leaves 35 lattice
0 ; ; : : 1o » data points

v

e \We fit systematic corrections for higher-twist and discretization effects using
the same parameterization as a previous study of the valence quark PDFs

Z231 (V) =3 ipl(V) P. C. Barry, et al., PRD 105:114051 (2022)
2
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Fits to the Lattice Data
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Gluon PDF Operator Study

e There are several operators that can be measured on the lattice which all
have the same light-cone behavior an etal. PRO100:074509 (2019)
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Hou et al. (CTEQ) PRD 103(1):014013 (2021)

Gluon PDF Operator StUdy Yao, et al. JHEP 11(2023)021

e Took the CT18 nucleon gluon PDF at MS scale u = 2 GeV and used LaMET
matching and a Fourier transform to compare to the operators in the ratio
renormalization scheme from the a12m310 ensemble
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O3 operator as well
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e The perturbative details of HR have only been studied for 0 and 0?, so we
did an exploratory study on hybrid renormalization for O®), estimating a single
parameter, which requires further perturbative study to obtain rigorously

e \We were able to obtain a quasi-PDF with
reasonable signal, which could be
matched to the light-cone PDF, if the
matching kernels are calculated, as well
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Gao, et al. PRD 109:0094506 (2024)

Coulomb Gauge Fixing to Improve Signal
[See Jinchen’s talk at 11:50AM on Sunday]

e It has recently been demonstrated that calculating the quark PDF operators in
the Coulomb gauge (CG) is a viable method to improve the long distance
signal of the matrix elements
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‘0 as an exploratory study, and see
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invariant calculation (lighter points)
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matching kernels to interpret the results
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We also see some interesting bumps and kinks, suggesting we may need to

understand some numerical aspects better, as well
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Summary and Outlook
e There has been steady progress in elucidating the gluonic structure of the
nucleon and pion through lattice PDFs

e \We find that lattice data can have a significant impact on the JAM global fit of
the pion PDF, but the lattice systematics must be taken into account

e We still need to make improvements in large momentum and larger distance
signal to improve gluon PDFs in both the pseudo- and quasi-PDF methods

e \We're exploring different signal improvement methods and constantly
increasing our statistics to push the limits on the gluon PDF
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Backup Slides



Continuum-Physical Extrapolation

We use the following fit form for the physical continuum extrapolation of the

nucleon gluon RplITD:

kma.x
M (v, 2°, 0, M) = (Z Ai(a, M )VF + ¢, (a, M,)2?

g N ‘. > ik

- No

[ ¢ a09m310

[ e al2m220

[ = a12m310

[ A al5m310 g
AR TS IR TR Tl N

0 1 2 3 < 5 6 7

k=0

x (1 + coa® + cpr (M2 — (MPM5)2))

The gold band, is a similar form
with a instead of a2. The
results are similar, but the error

is larger, we moved forward with

the e)a2apolation

)



PDF Forms, Assumptions, Constraints, and Theory

e We use the PDF forms: fi(x, posa;) = Nx%(1 — x)ﬁi(l =i Yixz)
with py = m. =127 GeV and y,, =0

e \We assume charge symmetry and a flavor symmetric sea:

e - o — T __ U __ o _ =W
g, =il =" —u” _dg g, =u =gdf =5t =3

e \We constrain the normalizations using valence quark number conservation
and the momentum sum rule:

[ dxq,(x,u) =1 [¢ dxx[2q,(x, ) + 6q(x.u) + g(x.p)] = 1

e Perturbative theory at NLO with threshold resummation for the DY with a
dOUbIe Mellln tranSform P. C. Barry, et al., PRL 127:232001 (2021)
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z-Cut Justification

e Attempting a fit with z = 1a and 2a results in a large x° /Npts with a very large
spread: 5.2(17)

e The small-z have large
discretization effects!

102 4

counts

10" 4

10(1 E




R,y(y, 2*p?) = cosy —

High-z Validity
e \We can plot the leading
coefficient in the matching
kernel expansion, which
grows with z
e The term that multiplies this
coefficient is O(1)
e This supports that we need

the higher twist effects, but
we aren’t breaking our
perturbative expansion
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Systematic Parameterization

e Used the form from P. C. Barry, et al., PRD 105:114051 (2022)

3|
Re M(v, 22) = / Az Gy, iar) C ™ (v, 22, urar)
0
a

||

+ 2°By(v) + —Pi(v)

1
— »OQ a(1 _ \b 7(ab)
Pi(v) = D 00n(v) pn, Ton(V) = /0 dz cos(va) 2%(1 — z)” Jp*" (2)
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Systematic Effects

0.00]
—0.02

—0.04
S

S —0.06

—0.08

—0.10

2 =0.1207 fm

z=0.2414 fm

z =0.3621 fm

0.10
0.05
0.00

= -0.05

z =0.10

—0.20

Discretiztaion

a'are_postdictior

[ Higher-Twist
Discretiztaion
0.1 0.6 0.8 7.0 12
v
2 =0.4828 fm

1.0

Higher-Twist
Discretiztaion

v
2 =0.8449 fm

Higher-Twist
Discret tiztaion

Discretization effects pull
the RpITD down at small z
(and don’t do much at
high-z)

Higher-twist effects push
the RplITD upwards at
intermediate to larger-z
(and don’t do much at the
smallest-z)



Z-Score

e The chi*2/dof distribution changes width as the dof changes, so chi*2/dof is
not necessarily the full picture

hypothetical distributions of reduced chi-squared
for nu between 10 and 100

e The Z-score gives the number of standard
deviations, your value of chi*2/dof is away
from 1

e EXx. Achi*2/dof of 1.5 is reasonable with 10
points, but not so much 100 points
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Hyb ri d - Rati O SChe me Ji, et al. Nucl. Phys. B. 964:115311 (2021)

The hybrid-ratio scheme is a renormalization scheme which handles the linear
divergence from the Wilson line self energy at long distances

We renormalize the quasi-PDF matrix elements as:
h®(0,0) h"(z,P;)
RR(z P.) = { W{0.P) RPG0) HEi

hB(O,O) hB(z’Pz) dm+mo)(z—zs
hB(O,Pz) hB(zs,O) X e( + O)( )

2 = By

Zs is a distance scale, before which the divergence is mostly ignorable

o Should not be much more than ~0.3 fm

om + mg can be fit by matching to the Wilson coefficients for the given
operator

The hybrid-ratio scheme agrees with the standard ratio scheme for z, — 00
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