EXPLORING THE ROLE OF THE PRE-EQUILIBRIUM PHASE IN DETERMINING NUCLEAR GEOMETRY IN **HIGH-ENERGY COLLISIONS**

Kevin Possendoro Pala^{1,2}

¹ University of Illinois Urbana-Champaign ² University of São Paulo

Fernando G. Gardim

André V. Giannini

Frédérique Grassi

Willian M. Serenone

Jacquelyn Noronha-Hostler

MARCH/2025

Project 2020/15893-4

Project 2024/08903-4

STAR RESULTS

• ${}^{96}_{44}$ Ru + ${}^{96}_{44}$ Ru and ${}^{96}_{40}$ Zr + ${}^{96}_{40}$ Zr at $\sqrt{s}_{NN} = 200 \ GeV$

Search for the chiral magnetic effect with isobar collisions at $\sqrt{s_{NN}} = 200$ GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider

M. S. Abdallah et al. (STAR Collaboration) Phys. Rev. C 105, 014901 – Published 3 January 2022

 $^{96}_{40}$ Zr $^{96}_{44}$ Ru

MARCH/2025

PRC 105, 014901

HOW DOES THE INITIAL STATE GEOMETRY AFFECTS THE FINAL STATE OBSERVABLES?

GHP2025

OBJECTIVES

- Numerical simulations
- To perform a systematic analysis of how diffe final state
- To study how observables sensitive to nu hydrodynamics and hadronic transport

To perform a systematic analysis of how differences in initial state geometry are carried out to the

To study how observables sensitive to nuclear geometry are dependent on pre-equilibrium,

GHP2025

SIMULATION CHAIN

$$\tau = \sqrt{t^2 - z^2} \sim 0 \, fm/c$$

Thermalized QGP evolution

Pre-equilibrium until thermalization

MARCH/2025

Decays, resonances and scatterings

Particlize the freeze-out surface

ISOBAR: SIMULATION CHAIN

- (2+1)D boost invariant at $\mu_b = 0$
- XSCAPE framework Putschke et al, arXiv:1903.07706, 2019

Nucleons position as input

JETSCAPE parametrization PRC 103, 054904 (2021)

Nucleons are sampled from a deformed Woods-Saxon distribution

 $\mathscr{R}(\theta,\varphi) = \mathbb{R}_0 \left\{ 1 + \beta_2 \right| Y_2^0(\theta,\varphi) \cos \gamma - \frac{1}{2} \left(\theta,\varphi \right) - \frac{1}{2} \left(\theta,\varphi$

T_RENTo input

 $P(r,\theta,\varphi) = \frac{\rho_0}{1 + \exp\left\{ [r - \mathcal{R}(\theta,\varphi)] / a \right\}}$

$$\left\{+\frac{2}{\sqrt{2}}\sin\gamma \Re Y_2^2\left(\theta,\varphi\right)\right\}+\beta_3 Y_3^0(\theta,\phi)\right\}$$

No neutron-skin included

	R_0 (fm)	a (fm)
Case 1	5.09	0.46
Case 2	5.09	0.46
Case 3	5.09	0.46
Case 4	5.09	0.46
Case 5	5.09	0.52
Case 6	5.02	0.52

β_2	β_3	γ
0.16	0	$\pi/6$
0.16	0	0
0.16	0.20	0
0.06	0.20	0
0.06	0.20	0
0.06	0.20	0

	$R_{ m 0}$ (fm)	${\cal a}$ (fm)
Case 1	5.09	0.46
Case 2	5.09	0.46
Case 3	5.09	0.46
Case 4	5.09	0.46
Case 5	5.09	0.52
Case 6	5.02	0.52

β_2	β_3	γ
0.16	0	$\pi/6$
0.16	0	0
0.16	0.20	0
0.06	0.20	0
0.06	0.20	0
0.06	0.20	0

	R_0 (fm)	${\cal a}$ (fm)
Case 1	5.09	0.46
Case 2	5.09	0.46
Case 3	5.09	0.46
Case 4	5.09	0.46
Case 5	5.09	0.52
Case 6	5.02	0.52

β_2	β_3	γ
0.16	0	$\pi/6$
0.16	0	0
0.16	0.20	0
0.06	0.20	0
0.06	0.20	0
0.06	0.20	0

	R_0 (fm)	a (fm)	β_2	β_3	γ
Case 1	5.09	0.46	0.16	0	$\pi/6$
Case 2	5.09	0.46	0.16	0	0
Case 3	5.09	0.46	0.16	0.20	0
Case 4	5.09	0.46	0.06	0.20	0
Case 5	5.09	0.52	0.06	0.20	0
Case 6	5.02	0.52	0.06	0.20	0

	R_0 (fm)	${\cal a}$ (fm)
Case 1	5.09	0.46
Case 2	5.09	0.46
Case 3	5.09	0.46
Case 4	5.09	0.46
Case 5	5.09	0.52
Case 6	5.02	0.52

β_2	β_3	γ
0.16	0	$\pi/6$
0.16	0	0
0.16	0.20	0
0.06	0.20	0
0.06	0.20	0
0.06	0.20	0

	R_0 (fm)	a (fm)
Case 1	5.09	0.46
Case 2	5.09	0.46
Case 3	5.09	0.46
Case 4	5.09	0.46
Case 5	5.09	0.52
Case 6	5.02	0.52

β_2	β_3	γ
0.16	0	$\pi/6$
0.16	0	0
0.16	0.20	0
0.06	0.20	0
0.06	0.20	0
0.06	0.20	0

INITIAL CONDITION MAPPING

Relations between initial and final state observables $\langle p_T \rangle_{event} = \kappa_{p_T} \frac{E}{S}$

INITIAL CONDITION MAPPING

 $\langle p_T \rangle_{event} \to \kappa_{p_T} E/S$

 $V_n \to \kappa_n \varepsilon_n$

 $\rho_n^{IC} = \frac{\langle \varepsilon_n^2 E/S \rangle - \langle \varepsilon_n^2 \rangle \langle E/S \rangle}{\sigma_{\varepsilon_n^2} \sigma_{E/S}}$

$$\sigma_{\varepsilon_n^2} = \sqrt{\langle \varepsilon_n^4 \rangle - \langle \varepsilon_n^2 \rangle^2}$$

 $\sigma_{E/S} = \sqrt{\langle (E/S)^2 \rangle - \langle E/S \rangle^2}$

 $\sim 20k$ events for each case

 \sim 20k events for each case

 $\langle E/S \rangle$ ratios 1% greater than $\langle p_T \rangle$ ratios, which decreases for central collisions

 $\langle E/S \rangle$ ratios 1% greater than $\langle p_T \rangle$ ratios, which decreases for central collisions

Matches for case 5

Indicates that κ_{p_T} may depends on a

 $\langle E/S \rangle$ ratios 1% greater than $\langle p_T \rangle$ ratios, which decreases for central collisions

Matches for case 5

Indicates that κ_{p_T} may depends on a

ISOBAR: RESULTS

- Results indicate that initial conditions can be used to predict observables for central collision
- Now we can focus on ICs and FS

1.46 *fm/c*

MARCH/2025

10M events for each case

GHP2025

ISOBAR: RESULTS

Gardim, Giannini, Grassi, P. Pala, M. Serenone Phys. Rev. C **110**, 064907

$$\varepsilon_n \{2\} = \sqrt{\langle \varepsilon_n^2 \rangle},$$
$$\varepsilon_n \{4\} = \sqrt[4]{2\langle \varepsilon_n^2 \rangle^2 - \langle \varepsilon_n^4 \rangle}$$

GHP2025

ISOBAR: RESULTS

Gardim, Giannini, Grassi, P. Pala, M. Serenone Phys. Rev. C **110**, 064907

MARCH/2025

$$\varepsilon_n \{2\} = \sqrt{\langle \varepsilon_n^2 \rangle},$$
$$\varepsilon_n \{4\} = \sqrt[4]{2\langle \varepsilon_n^2 \rangle^2 - \langle \varepsilon_n^4 \rangle}$$

Effects of β_2 No effect of γ

GHP2025

ISOBAR: RESULTS

MARCH/2025

Non trivial interplay between β_2 and β_3

$$\varepsilon_n \{2\} = \sqrt{\langle \varepsilon_n^2 \rangle},$$

$$\varepsilon_n \{4\} = \sqrt[4]{2\langle \varepsilon_n^2 \rangle^2 - \langle \varepsilon_n^4 \rangle}$$

Gardim, Giannini, Grassi, P. Pala, M. Serenone Phys. Rev. C 110, 064907

GHP2025

ISOBAR: RESULTS

Gardim, Giannini, Grassi, P. Pala, M. Serenone Phys. Rev. C **110**, 064907

MARCH/2025

$$\varepsilon_n \{2\} = \sqrt{\langle \varepsilon_n^2 \rangle},$$
$$\varepsilon_n \{4\} = \sqrt[4]{2\langle \varepsilon_n^2 \rangle^2 - \langle \varepsilon_n^4 \rangle}$$

FS effects around at most 1%

GHP2025

ISOBAR: RESULTS

MARCH/2025

 $\varepsilon_n\{2\} = \sqrt{\langle \varepsilon_n^2 \rangle},$

$$\varepsilon_n\{4\} = \sqrt[4]{2\langle\varepsilon_n^2\rangle^2 - \langle\varepsilon_n^4\rangle}$$

Gardim, Giannini, Grassi, P. Pala, M. Serenone

GHP2025

ISOBAR: RESULTS

MARCH/2025

Sensitive to *a*

 $\varepsilon_n\{2\} = \sqrt{\langle \varepsilon_n^2 \rangle},$

$$\varepsilon_n\{4\} = \sqrt[4]{2\langle \varepsilon_n^2 \rangle^2 - \langle \varepsilon_n^4 \rangle}$$

GHP2025

ISOBAR: RESULTS

MARCH/2025

 $\varepsilon_n\{2\} = \sqrt{\langle \varepsilon_n^2 \rangle},$

$$\varepsilon_n\{4\} = \sqrt[4]{2\langle\varepsilon_n^2\rangle^2 - \langle\varepsilon_n^4\rangle}$$

Gardim, Giannini, Grassi, P. Pala, M. Serenone

Increase in FS effects

GHP2025

ISOBAR: RESULTS

Sensitivity to a

Gardim, Giannini, Grassi, P. Pala, M. Serenone Phys. Rev. C **110**, 064907

$$\varepsilon_n\{4\} = \sqrt[4]{2\langle \varepsilon_n^2 \rangle^2 - \langle \varepsilon_n^4 \rangle}$$

GHP2025

ISOBAR: RESULTS

Sensitivity to a

Gardim, Giannini, Grassi, P. Pala, M. Serenone Phys. Rev. C 110, 064907

FS effect increases with n

MARCH/2025

$$\varepsilon_n\{2\} = \sqrt{\langle \varepsilon_n^2 \rangle} \,,$$

$$\varepsilon_n\{4\} = \sqrt[4]{2\langle \varepsilon_n^2 \rangle^2 - \langle \varepsilon_n^4 \rangle}$$

Even stronger FS effect

GHP2025

ISOBAR: RESULTS

Gardim, Giannini, Grassi, P. Pala, M. Serenone Phys. Rev. C 110, 064907

 $\varepsilon NSC(2,3) = \frac{\overline{\langle \varepsilon_2^2 \varepsilon_3^2 \rangle} - \overline{\langle \varepsilon_2^2 \rangle \langle \varepsilon_3^2 \rangle}}{\langle \varepsilon_2^2 \rangle \langle \varepsilon_3^2 \rangle}$

GHP2025

Gardim, Giannini, Grassi, P. Pala, M. Serenone Phys. Rev. C 110, 064907

 $\varepsilon NSC(2,3) = \frac{\langle \varepsilon_2^2 \varepsilon_3^2 \rangle - \langle \varepsilon_2^2 \rangle \langle \varepsilon_3^2 \rangle}{\langle \varepsilon_2^2 \rangle \langle \varepsilon_3^2 \rangle}$

GHP2025

 $\varepsilon NSC(2,3) = \frac{\overline{\langle \varepsilon_2^2 \varepsilon_3^2 \rangle} - \overline{\langle \varepsilon_2^2 \rangle \langle \varepsilon_3^2 \rangle}}{\langle \varepsilon_2^2 \rangle \langle \varepsilon_3^2 \rangle}$

GHP2025

Sign change

MARCH/2025

 $\varepsilon NSC(2,3) = \frac{\overline{\langle \varepsilon_2^2 \varepsilon_3^2 \rangle} - \overline{\langle \varepsilon_2^2 \rangle \langle \varepsilon_3^2 \rangle}}{\langle \varepsilon_2^2 \rangle \langle \varepsilon_3^2 \rangle}$

Gardim, Giannini, Grassi, P. Pala, M. Serenone Phys. Rev. C 110, 064907

Double sign change

GHP2025

ISOBAR: RESULTS

MARCH/2025

Gardim, Giannini, Grassi, P. Pala, M. Serenone Phys. Rev. C **110**, 064907

ISOBAR: RESULTS

 ρ_2, ρ_3 are sensitive to free-streaming

MARCH/2025

Gardim, Giannini, Grassi, P. Pala, M. Serenone Phys. Rev. C **110**, 064907

ISOBAR: RESULTS

 ρ_2, ρ_3 are sensitive to free-streaming

MARCH/2025

ISOBAR: RESULTS

 ρ_2, ρ_3 are sensitive to free-streaming

GHP2025

ISOBAR: RESULTS

 ρ_2, ρ_3 are sensitive to free-streaming

Strong effect of β_3 in ρ_2 for non-central collisions

GHP2025

ISOBAR: RESULTS

 ρ_2, ρ_3 are sensitive to free-streaming

Strong effect of β_3 in ρ_2 for non-central collisions

Sign change

GHP2025

ISOBAR: RESULTS

 ρ_2, ρ_3 are sensitive to free-streaming

Strong effect of β_3 in ρ_2 for non-central collisions

Sign change

MARCH/2025

GHP2025

 ρ_2, ρ_3 are sensitive to free-streaming

Strong effect of β_3 in ρ_2 for non-central collisions

Sign change

Overall extreme sensitive to β_3

MARCH/2025

GHP2025

 ρ_2, ρ_3 are sensitive to free-streaming

Strong effect of β_3 in ρ_2 for non-central collisions

Sign change

Overall extreme sensitive to β_3

Decreases with FS time

MARCH/2025

SUMMARY

- $\sim \varepsilon_2$ ratios predicts v_2 ratios, ε_3 ratios predicts v_3 ratios
- \blacktriangleright $\langle E/S \rangle$ ratios do not follow $\langle p_T \rangle$ ratios (except for central collisions)
- Effects of hadronic transport is minimal in these ratios
- $ho_{2,3}$ can be used together with $\varepsilon_{2,3}$ to better constraint the nuclear structure parameters, but more statistics to calculate $\rho_{2,3}^{Hydro}$ with full simulations is necessary
- In the results, a strong effect of the free-streaming time on $\rho_{2,3}$ and eNSC(2,3) is observed, which may be used to constrain the duration of the preequilibrium phase.

BACKUP

GHP2025

T_R**ENTO**

$$T_N(x, y) = \sum_{i=1}^{N_{part}} w_i \int \mathrm{d}z$$

 $T_R(x, y) = T_R(p; T_A, T_B)$

 $\overline{\varepsilon}(\overrightarrow{x_T}) = \overline{\varepsilon}(x, y) = \lim_{\tau \to 0^+} \tau \varepsilon(\tau, x, y, \eta = 0) = NT_R(x, y)$

$$\frac{1}{(2\pi w^2)^{3/2}}e^{\frac{(x-x_i)^2+(y-y_i)^2+z^2}{2w^2}}$$

$$f_{B} = \left(\frac{T_{A}^{p}(x, y) + T_{B}^{p}(x, y)}{2}\right)^{\frac{1}{p}}$$

FREE-STREAMING

• $\bar{\varepsilon} \rightarrow$ zero mass Partons with a locally isotropic momentum distribution

Milne coordinates solution

MARCH/2025

 $p^{\mu}\partial_{\mu}f = 0$

$f(\tau, \overrightarrow{x_T}, \eta_s; \overrightarrow{p_T}, y) = f(\tau_0, \overrightarrow{x_T} - (\tau_{switch} - \tau_0) \hat{p_T}, \eta_s; \overrightarrow{p_T}, y)$

$$\int \frac{\mathrm{d}^3 p}{p^0} p^{\mu} p^{\nu} f(\tau, \overrightarrow{x_T}, \eta_s; \overrightarrow{p_T}, y)$$

GHP2025

FREE-STREAMING

Boost invariant

Where

Using initial isotropy

 $\hat{p}^{\mu} = \frac{p^{\mu}}{p_T}\Big|_{y=0} = (1, \cos \phi_p, \sin \phi_p, 0)$ $T^{\mu\nu}(\tau, \overrightarrow{x_T}, \eta_s = 0) = \frac{1}{\tau} \int_{-\pi}^{\pi} \mathrm{d}\phi_p \, \hat{p}^{\mu} \hat{p}^{\nu} F(\tau, \overrightarrow{x_T}; \phi_P)$

 $F(\tau, \overrightarrow{x_T}; \phi_P) = F_0(\overrightarrow{x_T} - (\tau - \tau_0)\hat{p_T})$

 $\overline{\varepsilon}(\overrightarrow{x_T}) = \tau_0 T^{\tau\tau}(\tau_0, \overrightarrow{x_T}) = 2\pi F_0(\tau_0, \overrightarrow{x_T})$

GHP2025

FREE-STREAMING

Boost invariant

Where

Using initial isotropy

 $\hat{p}^{\mu} = \frac{p^{\mu}}{p_T}\Big|_{y=0} = (1, \cos \phi_p, \sin \phi_p, 0)$ $T^{\mu\nu}(\tau, \overrightarrow{x_T}, \eta_s = 0) = \frac{1}{\tau} \int_{-\tau}^{\tau} d\phi_p \ \hat{p}^{\mu} \hat{p}^{\nu} F(\tau, \overrightarrow{x_T}; \phi_P)$

 $F(\tau, \overrightarrow{x_T}; \phi_P) = F_0(\overrightarrow{x_T} - (\tau - \tau_0)\widehat{p_T})$

 $\overline{\varepsilon}(\overrightarrow{x_T}) = \tau_0 T^{\tau\tau}(\tau_0, \overrightarrow{x_T}) = 2\pi F_0(\tau_0, \overrightarrow{x_T})$

GHP2025

FREE-STREAMING

Boost invariant

Where

Using initial isotropy

MUSIC: EQUATIONS

• d_{μ} is the covariant derivative

 $\mathrm{d}_{\mu}T^{\mu\nu}=0$

 $\mathrm{d}_{\mu}N^{\mu}=0$

MUSIC: EQUATIONS

• d_{μ} is the covariant derivative

 $\mathrm{d}_{\mu}T^{\mu\nu}=0$ $d_{\mu}N^{\mu} = 0$ $N^{\mu} = \rho_b u^{\mu}$

$$\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$$

MARCH/2025

$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} - \Delta^{\mu\nu} (P + \Pi) + \pi^{\mu\nu}$

MUSIC: EQUATIONS

DNMR

$\tau_{\pi} D \pi^{\langle \mu \nu \rangle} + \pi^{\mu \nu} = 2\eta \sigma^{\mu \nu} + 2\tau_{\pi} \pi_{a}^{\langle \mu} \omega^{\nu \rangle a} - \delta_{\pi \pi} \pi^{\mu \nu} \theta - \tau_{\pi \pi} \pi_{a}^{\langle \mu} \sigma^{\nu \rangle a} + \lambda_{\pi \Pi} \Pi \sigma^{\mu \nu} + \phi_{\gamma} \pi_{a}^{\langle \mu} \pi^{\nu \rangle a}$

MARCH/2025

 $\tau_{\Pi} D\Pi + \Pi = -\zeta \theta - \delta_{\Pi\Pi} \Pi \theta + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu}$

MUSIC: EQUATIONS

DNMR

$\tau_{\pi} D \pi^{\langle \mu \nu \rangle} + \pi^{\mu \nu} = 2\eta \sigma^{\mu \nu} + 2\tau_{\pi} \pi_{\alpha}^{\langle \mu} \omega^{\nu \rangle a} - \delta_{\pi \pi} \pi^{\mu \nu} \theta - \tau_{\pi \pi} \pi_{\alpha}^{\langle \mu} \sigma^{\nu \rangle a} + \lambda_{\pi \Pi} \Pi \sigma^{\mu \nu} + \phi_{\gamma} \pi_{\alpha}^{\langle \mu} \pi^{\nu \rangle a}$

- First order: η , ζ
- Second order : τ_{π} , $\delta_{\pi\pi}$, $\tau_{\pi\pi}$, $\lambda_{\pi\Pi}$, ϕ_7 , τ_{Π} , $\delta_{\Pi\Pi}$, $\lambda_{\Pi\pi}$.

MARCH/2025

 $\tau_{\Pi} D\Pi + \Pi = -\zeta \theta - \delta_{\Pi\Pi} \Pi \theta + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu}$

MUSIC: EQUATIONS

DNMR

$\tau_{\pi} D \pi^{\langle \mu \nu \rangle} + \pi^{\mu \nu} = 2\eta \sigma^{\mu \nu} + 2\tau_{\pi} \pi_{a}^{\langle \mu} \omega^{\nu \rangle a} -$

- $\tau_{\Pi} D\Pi + \Pi = -\zeta$
- First order: η , ζ **——** JETSCAPE Parametrization
- Second order : τ_{π} , $\delta_{\pi\pi}$, $\tau_{\pi\pi}$, $\lambda_{\pi\Pi}$, ϕ_7 , τ_{Π} , $\delta_{\Pi\Pi}$, $\lambda_{\Pi\pi}$.

MARCH/2025

$$\begin{split} u^{\mu} d\mu &= \mathbf{D}, \\ \Delta^{\mu\nu\alpha\beta} &= \frac{1}{2} (\Delta^{\mu\alpha} \Delta^{\nu\beta} + \Delta^{\mu\beta} \Delta^{\nu\alpha}) - \frac{1}{\Delta_{\lambda}^{\lambda}} \Delta^{\mu\nu} \\ \theta &= d_{\mu} u^{\mu}, \\ A^{<\mu\nu>} &= \Delta^{\mu\nu}_{\alpha\beta} A^{\alpha\beta}, \\ \sigma^{\mu\nu} &= \nabla^{<\mu} u^{\nu>} = \Delta^{\mu\nu}_{\alpha\beta} d^{\alpha} u^{\beta}, \\ \omega^{\mu\nu} &= \frac{1}{2} \left(\nabla^{\mu} u^{\nu} + \nabla^{\mu} u^{\nu} \right). \end{split}$$

$$-\delta_{\pi\pi}\pi^{\mu\nu}\theta - \tau_{\pi\pi}\pi_{a}^{\langle\mu}\sigma^{\nu\rangle a} + \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu} + \phi_{7}\pi_{a}^{\langle\mu}\pi^{\nu\rangle a}$$

$$\zeta \theta - \delta_{\Pi\Pi} \Pi \theta + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu}$$

----- Function of ζ , η

MUSIC: EQUATIONS

• JETSCAPE parametrization for η and ζ

$$\frac{\eta}{s} = max \left[\frac{\eta}{s}\Big|_{lin}(T), 0\right]$$

$$\frac{\eta}{s}\Big|_{lin}(T) = a_{low}(T - T_{\eta})\Theta(T_{\eta} - T) + \left(\frac{\eta}{s}\right)_{kink} + a_{high}(T - T_{\eta})\Theta(T - T_{\eta})\Theta(T - T_{\eta})$$

$$\frac{\zeta}{s}(T) = \frac{(\zeta/s)_{max}\Lambda^2}{\Lambda^2 + (T - T_{\zeta})^2}$$

 $\Lambda = w_{\zeta} [1 + \lambda_{\zeta} \operatorname{sign}(T - T_{\zeta})]$

MUSIC: EQUATIONS

Second order transport coefficients

 $\delta_{\Pi\Pi} = \frac{2}{3}\tau_{\Pi},$

$$\begin{aligned} \tau_{\Pi} &= \frac{\zeta}{15\left(\frac{1}{3} - c_s^2\right)^2 (\varepsilon + P)},\\ \lambda_{\Pi\pi} &= \frac{8}{5}\left(\frac{1}{3} - c_s^2\right) \tau_{\Pi}, \end{aligned}$$

MUSIC: LANDAU MATCHING

 $T^{\mu\nu} = (\varepsilon + P + \Pi)u^{\mu}u^{\nu} - (P + \Pi)g^{\mu\nu} + \pi^{\mu\nu}$

MARCH/2025

Landau rest frame

$$P(\varepsilon, \rho_b)$$

$$(-4\varepsilon) + \frac{1}{3} \left(\varepsilon - T^{\alpha}_{\alpha}\right) g^{\mu\nu} + T^{\mu\nu}$$

MUSIC: EVOLUTION

- MKurganov-Tadmor
- Evolve until $T < T_{sw} \forall$ cells
- Constant T surface

Freeze-out surface calculated from the grid using Cornellius

MARCH/2025

$T_{sw} = T(\tau, x, y, \eta_s)$

ISS: COOPER-FRYE

Probability of emitting particle of species *i* with momentum *p*

 $E\frac{\mathrm{d}^{3}N_{i}}{\mathrm{d}p^{3}}\left(x^{\mu},p^{\mu}\right) = p^{\nu}\mathrm{d}^{3}\sigma_{\nu}\left(f_{0i}\left(x^{\mu},p\right) + \delta f_{i}\left(x^{\mu},p^{\mu}\right)\right)$

 δf

$\delta f_i = f_{0i}(1 - \Theta f_{0i}) \Big[\Pi (A_T m_i^2 + A_E (u \cdot p)^2) + A_\pi \pi^{\mu\nu} p_{\alpha} \Big]$

$$\begin{aligned} \mathscr{F}_{rq} &= \frac{1}{(2q+1)!!} \sum_{i} \int_{p} (u \cdot p)^{r-2q} (-p \cdot \Delta \cdot p)^{q} f_{0i} (1 - \Theta f_{0i}) \\ \mathscr{N}_{rq} &= \frac{1}{(2q+1)!!} \sum_{i} b_{i} \int_{p} (u \cdot p)^{r-2q} (-p \cdot \Delta \cdot p)^{q} f_{0i} (1 - \Theta f_{0i}) \\ \mathscr{M}_{rq} &= \frac{1}{(2q+1)!!} \sum_{i} b_{i}^{2} \int_{p} (u \cdot p)^{r-2q} (-p \cdot \Delta \cdot p)^{q} f_{0i} (1 - \Theta f_{0i}) \\ \mathscr{A}_{rq} &= \frac{1}{(2q+1)!!} \sum_{i} m_{i}^{2} \int_{p} (u \cdot p)^{r-2q} (-p \cdot \Delta \cdot p)^{q} f_{0i} (1 - \Theta f_{0i}) \\ \mathscr{B}_{rq} &= \frac{1}{(2q+1)!!} \sum_{i} b_{i} m_{i}^{2} \int_{p} (u \cdot p)^{r-2q} (-p \cdot \Delta \cdot p)^{q} f_{0i} (1 - \Theta f_{0i}) \end{aligned}$$

ISS: COOPER-FRYE

Probability of emitting particle of species i with momentum p

 $E\frac{\mathrm{d}^{3}N_{i}}{\mathrm{d}p^{3}}\left(x^{\mu},p^{\mu}\right) = p^{\nu}\mathrm{d}^{3}\sigma_{\nu}\left(f_{0i}\left(x^{\mu},p\right) + \delta f_{i}\left(x^{\mu},p^{\mu}\right)\right)$

Equilibrium distribution Maxwell-Jüttner

 g_i $(2\pi)^3 \exp\left(\left(u(x)\cdot p + b_i\mu_b(x)\right)/T\right) + \Theta$

Surface element

Out of equilibrium correction

 $\delta f_i = f_{0i}(1 - \Theta f_{0i}) \left[\Pi (A_T m_i^2 + A_E (u \cdot p)^2) + A_\pi \pi^{\mu\nu} p_{\langle \mu} p_{\nu \rangle} \right]$

SMASH

In cascade mode, solves the Boltzmann equation

- Propagate in a straight line until one of the process occurs
- When Kinect freeze-out is reached free-stream the particles until final time

ISOBAR: SIMULATION CHAIN

JETSCAPE parametrization

$$\{a\} = \frac{\int dx \, dy \, \bar{\varepsilon}(x, y) a(x, y)}{\int dx \, dy \, \bar{\varepsilon}(x, y)}$$

ISOBAR: CENTRALITY SELECTION

- Two selection methods
- Effects on $dN/d\eta$ rations

Method B - Common bins for all cases

Method A - Different bins for each case

ISOBAR: SIMULATION CHAIN

Simple and fast parametric model

Nucleons position as input

$$\bar{\varepsilon}(\overrightarrow{x_T}) = \bar{\varepsilon}(x, y) = \lim_{\tau \to 0^+} \tau \varepsilon(\tau, x, y, \eta = 0)$$

MARCH/2025

+ Equations for Π and $\pi^{\mu\nu}$

kinetic freeze-out

