Unresolved Questions in Cold Nuclear Matter

C-J. Naïm

Anaheim Convention Center, Anaheim (CA, USA)

The 11th biennial workshop of the APS Topical Group on Hadronic Physics (GHP2025)

March 16, 2025

Proton-Proton Collisions

At large momentum transfer in pp, scale $Q \gg \Lambda_{QCD} \approx 200$ MeV

$$pp \rightarrow \gamma^{\star}/Z^{0} \rightarrow \ell^{+}\ell^{-} + X$$
 (Drell-Yan)

Factorization of cross section = approximation

$$\frac{\mathrm{d}\sigma_{\mathrm{pp}}}{\mathrm{d}y\,\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_1\,f_i^{\,\mathrm{p}}(x_1,\mu) \int \mathrm{d}x_2\,f_j^{\,\mathrm{p}}(x_2,\mu) \frac{\mathrm{d}\hat{\sigma}_{ij}(x_1,x_2,\mu')}{\mathrm{d}y\,\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{p}}^n}{Q^n}\right)$$

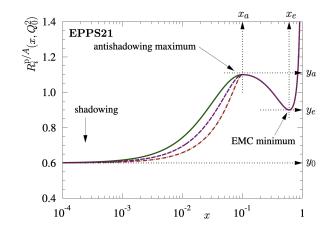
ô_{ij} : Partonic cross section calculable in perturbation theory
 *x*₁, *x*₂ : Fraction of momentum carried by the parton in the proton
 f_{i,j} : Parton Distribution Function (PDF), **universal**

Proton-Nucleus Collisions

Cross section in pA collisions assuming collinear factorization:

$$\frac{\mathrm{d}\sigma_{\mathrm{p}\mathsf{A}}}{\mathrm{d}y\,\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_1 \, f_i^{\mathsf{p}}(x_1,\mu) \int \mathrm{d}x_2 \, f_j^{\mathsf{A}}(x_2,\mu) \frac{\mathrm{d}\hat{\sigma}_{ij}(x_1,x_2,\mu')}{\mathrm{d}y\,\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathsf{A}}^n}{Q^n}\right)$$

Probing the PDF of a nucleus (without nuclear effects):


$$f_i^{A} = Z f_i^{p} + (A - Z) f_i^{n}$$
$$\sigma_{pA} = Z \sigma_{pp} + (A - Z) \sigma_{pn} \approx A \sigma_{pp}$$

Investigating nuclear effects via:

$$R_{\mathrm{pA}} \equiv rac{1}{A} rac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}\sigma_{\mathrm{pp}}} pprox 1$$

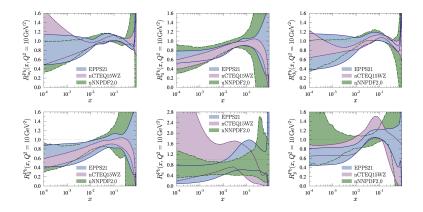
Nuclear parton distribution functions (nPDF)

- ▶ EMC effect discovered in 1983 in DIS on nuclear targets
- **• PDF** is modified in nuclei : $f_i^{p/A} \neq f_i^p$

The nuclear modification factor depends on x

nPDF and data-sets

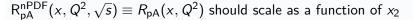
Historically, nPDFs were mainly extracted from DIS data

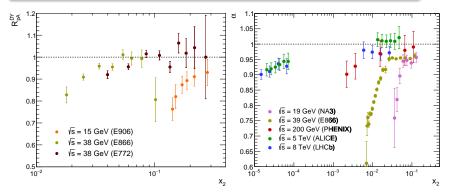

	EPS09	DSSZ	nCTEQ	EPPS16	EPPS21
e-DIS	√	\checkmark	~	√	\checkmark
ν -DIS		\checkmark		\checkmark	✓
Drell-Yan pA	 ✓ 	\checkmark	√	\checkmark	\checkmark
RHIC hadrons	√	\checkmark	√	√	✓
LHC data pA (QED)				\checkmark	\checkmark
Drell-Yan πA				\checkmark	✓
LHC data pA (D mesons)					✓

Recent hA collision data included to:

- Extend the explored x range
- Access gluon nPDF more directly

 \rightarrow Possible biases from additional nuclear effects


nPDF and data-sets



nCTEQ15WZ and EPPS21 use heavy quark data in pA

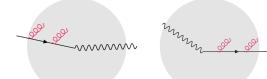
 \rightarrow Strongly impacting $R_g^{\mathbf{A}}$

nPDF Scaling

• Nuclear dependence for J/ψ and Drell-Yan production

Arleo Naïm Platchkov 1810.05120

• No scaling as a function of \sqrt{s} observed

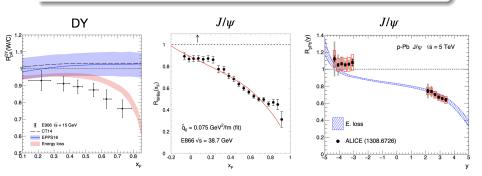

 \rightarrow Exploring beyond nPDF effects!

Exploring beyond nPDF effects

The nuclear medium affects hard processes differently.

- ► hA $\rightarrow \gamma^* + X$ (DY)
 - Initial-state interactions
- $eA \rightarrow e + h + X$ (SIDIS)

Final-state interactions



hA → cc̄(→ J/ψ) + X (Quarkonia)
 Initial- and final-state interactions

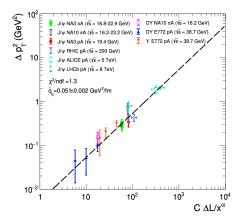
How does the nuclear medium affect particle production?

Energy loss effects

Energy loss effects have successfully described nuclear data

• E866 and ALICE J/ψ suppression, $\langle \epsilon \rangle_{\text{FCEL}} \propto \sqrt{\hat{q}L}/M \cdot E$

Arleo Peigné 1204.4609, 1212.0434, Arleo Kolevatov Peigné Rustamova 2003.06337

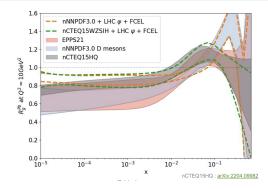

• E906 DY suppression,
$$\langle \epsilon \rangle_{\text{LPM}} \propto \alpha_s \hat{q} L^2$$

Arleo Naïm Platchkov 1810.05120

 \rightarrow What about other effects?

Transverse Momentum Broadening

Broadening effects have successfully described nuclear data



J/ψ, ψ', Υ and DY data: a factor of 400 in beam energy!
 Broadening analysis reveals universal scaling across energies

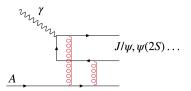
Arleo Naïm 1810.05120

nPDF including the energy loss effect

A global exhaustive fit: the (only) future path?

Avez Arleo work ongoing

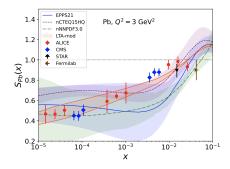
- Global fit including nPDF and energy loss from J/ψ suppression
- Significative impact on the shadowing amplitude


 \rightarrow Shadowing would be no more than 10-20% at $x\sim 10^{-5}$

Challenges in constraining gluon shadowing

Constraints on gluon shadowing from LHC pA data

- Limited experimental data for quarkonia and D-mesons
- Challenges in distinguishing shadowing from other nuclear effects
- ▶ Including energy loss in the global fit drastically reduces the shadowing amplitude by 10-20% at $x \sim 10^{-5}$

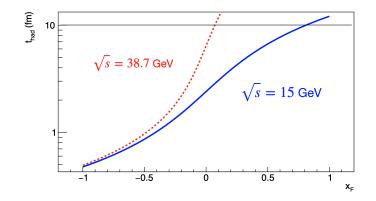

Ultra-peripheral collisions (UPC):

 $\rightarrow J/\psi$ production in UPCs to probe gluon shadowing

Shadowing amplitude

J/ψ production in UPCs: a direct probe of ${\it R_g}$

Guzey CFNS cold QCD workshop (2025)


Strong nuclear suppression of coherent J/ψ photoproduction in Pb-Pb UPC@LHC due to large gluon shadowing at small x

Guzey Kryshen Strikman Zhalov 1305.1724, Guzey Zhalov 1307.4526

► EPPS21, nCTEQ15HQ, nNNPDF3.0 use heavy quarks in pPb → A shadowing amplitude up to 60% at $x \sim 10^{-5}$?

Nuclear absorption

Multiple scattering of $Q\bar{Q}$ bound state within the nucleons

The typical size of a heavy nucleus is L ~ 10 fm
 J/ψ is mainly produced **outside** the nucleus at large y
 → No J/ψ absorption at LHC forward data

Energy loss or nuclear absorption?

The absorption of quarkonia remains an open question

•
$$\sigma_{abs}^{J/\psi} \sim \mathbf{3} - 10$$
 mb: extracted using pA at $y \sim 0$
 \rightarrow probably overestimated

Lourenco Vogt Woehri 0901.3054, Arleo Tram 0612043

- Energy loss alone coherently explains J/ψ suppression in pA
- Possible shadowing effects in nuclear matter: 10%, 20% or more?
- \blacktriangleright What remains of the role of absorption, $\sigma^{J/\psi}_{\rm abs} \ll 3$ mb?

 \rightarrow Comparison: J/ψ suppression in eA vs pA collisions The suppression should not be universel

Nuclear Data Challenges

Numerous nuclear data available, from fixed-target to LHC

- Difficult to interpret due to multiple effects
- Need to isolate specific effects through golden observables
- Importance of global approaches (global fits)
- Critical to estimate the precise contribution of shadowing!

 \rightarrow The cold QCD effects are the primary source of uncertainties in the interpretation of AA collisions

Golden observables?

$$\blacktriangleright \mathcal{R} = R_{pA}^{J/\psi} / R_{pA}^{\psi} \sim S\left(\sigma_{abs}^{J/\psi}, L_{A}\right) / S\left(\sigma_{abs}^{\psi}, L_{A}\right)$$

- Mid rapidity region, small \sqrt{s}
- Independent of shadowing: $Q_{J/\psi}^2 \sim Q_{\psi}^2$
- Independent of FCEL: $\langle \epsilon \rangle_{\text{FCEL}} \propto 1/M_{\perp}$
- R = R^{J/ψ}_{pA}/R[↑]_{pA}
 ▶ Weak shadowing dependence, strong sets correlations
 - Probe of the mass dependence of FCEL

▶ Transverse momentum broadening Δp_{\perp}^2 in eA and pA collisions

- Independent of shadowing
- Independent of energy loss

• J/ψ production

▶ Test the non-universality of J/ψ suppression in eA and pA

- Strong test of $\langle \epsilon \rangle_{\text{FCEL}}$ vs $\langle \epsilon \rangle_{\text{LPM}}$, + possible nuclear abs.
- $\blacktriangleright\,$ In eA, $\langle\epsilon\rangle_{\rm LPM}\rightarrow 0$ at large \sqrt{s}

Key Questions in Nuclear Collisions

White paper in preparation: Nuclear Cold QCD: Review and Future Strategy

1. Energy Loss Mechanisms

- Initial-state (DY), final-state (SIDIS)
- Initial/final-states (Quarkonia)

2. Final-State Interactions

Nuclear absorption, comovers

3. Shadowing vs. Saturation

- Shadowing amplitude
- Distinction between leading-twist shadowing and gluon saturation

CFNS Cold QCD workshop

Global Insights and Future Directions

Nuclear data reveal a scaling violation as a function of x

- \blacktriangleright $R_{\rm pA}$ is not universal
- Collinear factorization is not satisfied
- Shadowing uncertainty impacts all data interpretation
- Energy loss is key to describing the data
- Strategy to address the three questions:
 - Assess the limitations of hA data for nPDF studies
 - Enhance global fits by incorporating nuclear effects
 - Strongly constrain shadowing using future EIC DIS data
 - Identify and measure the key observables

No need for more data, but better data AND stronger collaboration between phenomenologists and experimentalists