

Meson Photoproduction as a Measure of SRC Universality

Jackson Pybus APS Topical Group on Hadronic Physics March 14, 2025

What do we know about SRCs?

Short-ranged, short-lived, highly correlated pairs of nucleons

Position-space

High relative and lower center-of-mass momentum

Momentum-space

What do we know about SRCs?

p

A-2

Universal high-momentum "tail" – about 10-20% of nucleons

Many recent results in quantitative study of SRCs

Many recent results in quantitative study of SRCs

Ground-state interpretation requires establishing plane-wave factorization!

Two ways to examine reaction-dependence: Scale Probe

Q^2 , |t| change the resolution **scale**

Different **probes**: Electromagnetic (e^{-}), Hadronic (p, A), Photonuclear (γ)

Two ways to examine reaction-dependence: Scale Probe

Q^2 , |t| change the resolution **scale**

Different **probes**: Electromagnetic (e^{-}) , Hadronic (p, A), Photonuclear (γ)

Probe Dependence of SRCs

Probe Dependence of SRCs

BM@N/R3B

GlueX

Probe Dependence of SRCs

CLAS12

GlueX

BM@N/R3B

Hall D SRC-CT Experiment

- Dedicated high-energy photonuclear measurement in Jefferson Lab Hall D
- 10.8-GeV electron beam energytagged coherent bremsstrahlung
- ~40-day measurement of targets ²H,
 ⁴He, ¹²C
- Final-state particles detected in largeacceptance GlueX spectrometer

SRC Photoproduction in Hall D

Quasi-elastic
 photoproduction: hard
 photon-nucleon interaction

SRC Photoproduction in Hall D

- Quasi-elastic
 photoproduction: hard
 photon-nucleon interaction
- ρ^- photoproduction:
 - Initial-state neutron
 - Distinctive $\rho^- \rightarrow \pi^- \pi^0$ decay
- Measurements of $(\gamma, \rho^- p)$ and $(\gamma, \rho^- pp)$

SRC Event Selection

SRC Event Selection

Signal Process: $\gamma n \rightarrow \rho^- p$

Second nucleon detection can help identify signal vs. background kinematics

SRC Event Selection

Inclusive variables:

- Momentum-transfer: $t_M = (p_{\gamma} p_M)^2$
- Invariant mass: $W_M^2 = (p_\gamma + p_N p_M)^2 \sim m_N^2$

Scaling variable: $\zeta_M \equiv \frac{m}{2m_N(E_{\gamma} - E_M)}$

Background: $\gamma n \rightarrow \rho^- \pi^+ n$

Misidentify π^+ as proton

Novel photoproduction variables balance **PID**, resolution, and kinematic considerations to identify SRC signal

First observation of SRCs in photoproduction

SRC Center-of-Mass Motion

e⁻: PRL (2018) p: Nature Physics (2021) γ: SRC-CT (2024)

Data connect to ab-initio theory at high momentum; Distinguish realistic and unrealistic models

Consistency with theory points to universal picture of the nuclear ground-state!

Conclusions

- First observation of SRCs using photoproduction reactions
- Extracted data show sensitivity to groundstate nuclear properties
- Data point to universal description of the ground-state of Short-Range Correlations across probes

Backup Slides

Interpreting SRC results requires two things:

1. Clean measurements of SRC breakup using two-nucleon knockout

Interpreting SRC results requires two things:

- 1. Clean measurements of SRC breakup using two-nucleon knockout
- 2. Model of the SRC component of the nuclear ground-state

Cruz-Torres et al., Nature Physics (2021)

Weiss et al., Phys. Lett. B 780 (2018) Weiss, Bazak, Barnea, Phys. Rev. C 92 (2015) Tropiano et al., Phys. Rev. C 104, 034311 (2021) Lynn et al., JPG 47, 045109 (2020) Chen, Detmold, Lynn, Schwenk, PRL 119 (2017) Ryckebusch et al., Phys. Lett. B 792, 21 (2019) Ciofi and Simula, Phys. Rev. C 53, 1689 (1996)

Ground-state model can be combined with "Plane-Wave Impulse Approximation"

e'

N'

Ground-state model can be combined with "Plane-Wave Impulse Approximation"

e'

Ground-state model can be combined with "Plane-Wave Impulse Approximation"

PWIA relies on factorization between reaction and ground-state

e'

$\sigma = \sigma_{e,N}(q) \times S(p_i, p_{rec})$ $f(q) \times S($

probe- dependent

Internal scale separation of SRCs on good footing:

Nature Physics 17, 667 (2021)

Nature Physics 17, 306 (2021)

GlueX Spectrometer

- Large-acceptance detector
- Solenoidal magnet:
 - Good p_T resolution
 - Poor p_{z} resolution
- Time-of-flight allows particle identification for forward-going charged particles
- Calorimeters allows good acceptance and reconstruction of final-state photons

Cross section extraction for $\gamma n \rightarrow \rho^- p$

Hadron-scattering measurements of SRCs

- Inverse-kinematics measurement at Joint Institute for Nuclear Research in Dubna
- ¹²C ions incident on hydrogen target
- Spectrometer measured final-state protons, nuclear fragments
- Allows reconstruction of nuclear final-state in SRC breakup scattering

Experimental evidence for SRC scale-separation

M. Patsyuk et al, Nature Physics (2021)

Next generation of ion-beam SRC studies underway

JINR, Dubna

GSI, Frankfurt

