SpinQuest J/ ψ TSSA Study via Newly-built Polarized Target Assembly at Fermilab

11th Workshop of the APS Topical Group on Hadronic Physics March 14-16, 2025

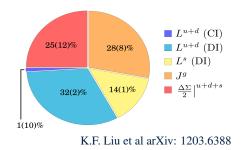
Vaniya Ansari Mississippi State University (for the SpinQuest Collaboration)

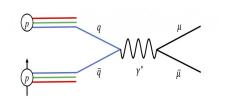
E1039 Experiment: Goals and Setup	E1039 Polarized Target System	Beam Commissioning Studies	Efforts for the ongoing J/ψ TSSA studies 000	Summary and Outlook
Outline				

- E1039 Experiment: Goals and Setup
- E1039 Polarized Target System
- **6** Beam Commissioning Studies
- **4** Efforts for the ongoing J/ψ TSSA studies
- **Summary and Outlook**

1

1039 Polarized Target System


Beam Commissioning Studies


Efforts for the ongoing J/ψ TSSA studies

Summary and Outlook

Proton Spin Puzzle

- Understanding the contributions to the proton's spin from its internal components—quarks and gluons has been a challenge
- In 1988, the European Muon Collaboration (EMC): Sum of quark spins accounts for ~30% of the total proton spin, known as "proton spin crisis"
- Gluon spin plays a significant role and the orbital angular momentum of quarks and gluons also contributes significantly

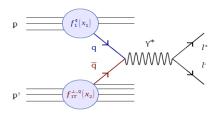
Jaffe-Manohar sum rule:

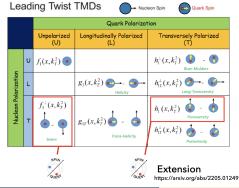
 $J=\frac{1}{2}\Delta\Sigma+L_q^{JM}+\Delta G+L_G$

Ji's sum rule:

 $J = \frac{1}{2}\Delta\Sigma + L_q^{Ji} + J_G$

E1039 Polarized Target System

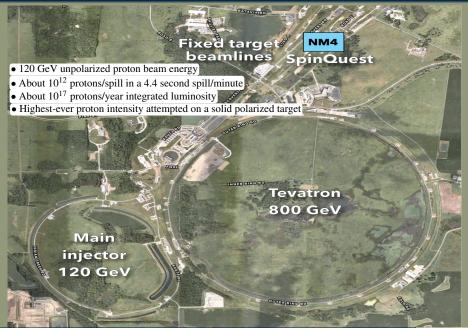

Beam Commissioning Studies


Efforts for the ongoing J/ψ TSSA studies

Summary and Outlook

Physics Goals of SpinQuest/E1039 Experiment

- SpinQuest/E1039 is a high luminosity Drell-Yan experiment deploying the transversely polarized NH₃ (as proton) and ND₃ (as neutron) targets to unravel the proton spin puzzle
- SpinQuest aims to measure the Sivers functions of sea quarks in the Drell-Yan process to access their orbital angular momentum, which could contribute up to $\sim 50\%$ of proton spin
- SpinQuest will also measure the Transverse Single Spin Asymmetry in J/ψ production to probe the gluons Sivers function


E1039 Polarized Target System

Beam Commissioning Studies

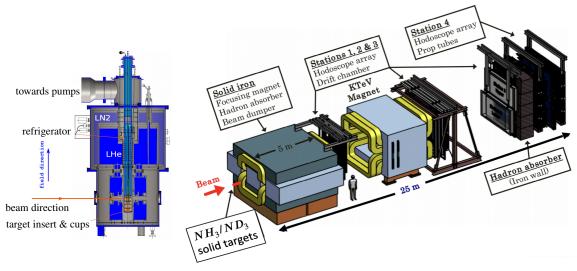
Efforts for the ongoing J/ ψ TSSA studies 000

Summary and Outlook

E1039 Experimental Setup

Vaniya Ansari

March 16, 2025


E1039 Polarized Target System

Beam Commissioning Studies

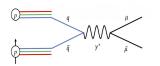
Efforts for the ongoing J/ ψ TSSA studies 000

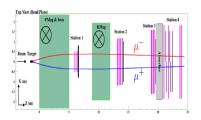
Summary and Outlook

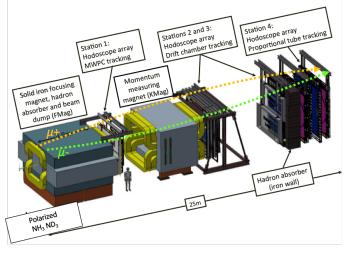
E1039 Experimental Setup

- The polarized target system is newly built for this project
- The spectrometer has been adopted from the SeaQuest (E906) experiment

E1039 Polarized Target System

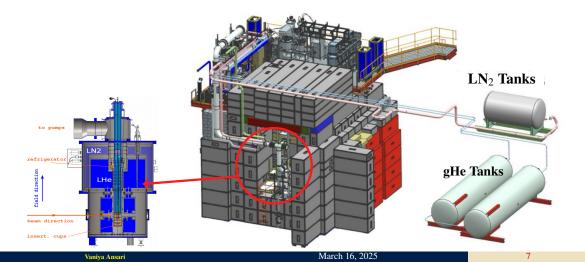

Beam Commissioning Studie:


Efforts for the ongoing J/ψ TSSA studies

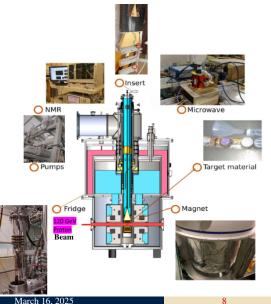

Summary and Outlook

E1039 Experimental Setup

• The SpinQuest event selection/reconstruction is expected to be the same as the SeaQuest



- Target cryostat in "cave" with an evaporation fridge at 1K and 5T, surrounded by concrete blocks for radiation shielding
- "Cryo platform" with helium liquefaction system: Producing about 8 L of liquid ⁴He (LHe) being stored in two, 205 L capacity dewars and high power root pumps



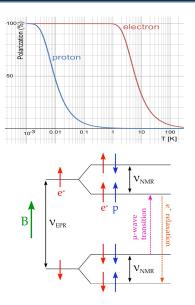
E1039 Polarized Target System 000

Efforts for the ongoing J/W TSSA studies

E1039 Polarized Target System

- ⁴He evaporation refrigerator consists of 5 W of cooling power to keep the target at about 1 K with 17,000 m^3 /h capacity root pumps
- The superconducting magnet provides a 5 T uniform transverse magnetic field with $\frac{dB}{R} < 10^{-4}$
- Target stick has three target cups, 8 cm long solid NH₃/ND₃ target material
- 140 GHz Radio Frequency signal is generated by extended interaction oscillator coupled to the target cups via a waveguide
- Three Nuclear Magnetic Resonance coils per cup are connected to the NMR system for polarization measurement
- Dynamic Nuclear Polarization technique is employed for nucleon polarization

E1039 Polarized Target System


Beam Commissioning Studie:

Efforts for the ongoing J/ψ TSSA studies

Summary and Outlook

Polarized Target: Dynamic Nuclear Polarization

- Due to the proton's small magnetic moment $(\mu_e = 660 \ \mu_p)$, high B and low T alone can't achieve significant polarization $(P = \tanh\left(\frac{\mu_B}{kT}\right))$
- At 1 K temperature and 5 T magnetic field, $P_e \cong 98\%$ compared to $P_p < 1\%$
- Dynamic Nuclear Polarization: Spin polarization is transferred from electrons to nucleon via RF irradiation and an external magnetic field
- The electron's millisecond and proton's minute-long relaxation times at 1 K are key for sustaining proton polarization.
- A good DNP target material candidate is characterized by the maximum achievable polarization, dilution factor, and resistance to the radiation damage

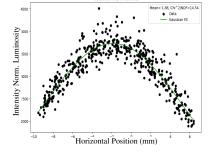
Beam Commissioning Studies: 05/24 - 07/24

Beam commissioning goals for the target system

- Alignment of beam & target
- Measurement of beam intensity & profile
- Target material handling
- Beam-induced polarization
- Annealing the target material
- Quench commissioning study to find the maximum sustainable intensity
- Sustainable operation time with the given amount of LHe production & consumption
- Improving system stability and efficiency
- Acquisition of "physics" data with a polarized NH₃ target and fully operational spectrometer
- Data analysis and system upgrades are in progress

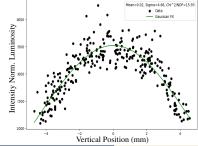
E1039 Polarized Target System

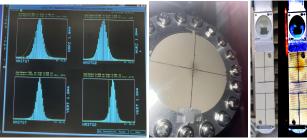
Beam Commissioning Studies


Efforts for the ongoing J/ψ TSSA studies

Summary and Outlook

Beam-target Alignment

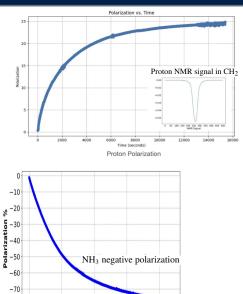

- Target size: 21×27×80 mm³
- Beam width: 3 to 4 mm with 1 mm precision
- Tungsten plates placed in top and bottom target cells
- Deployed G10 sheets on the beamline window and target cell
- Used two beam profile monitors

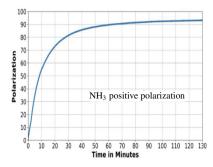


Gaussian fit (horizontal)

Gaussian fit (vertical)

Vaniya Ansari


March 16, 2025


11

- Determined the sustainable runtime in production data-taking mode based on LHe production and consumption rates
- The Fermilab low-conductive water (LCW) supply for the liquefier, roots pump, and spectrometer magnets was insufficient to operate the system at high summer temperatures. System repairs are ongoing
- Several soft quenches observed by the magnet power supply due to the unstable beam position, the current was gradually reduced by the power supply
- Performed a quench study to determine the beam intensity threshold which is deduced to be about 3.18×10^{12} protons per spill
- Target materials exposed to beam: CH₂, NH₃ and ND₃

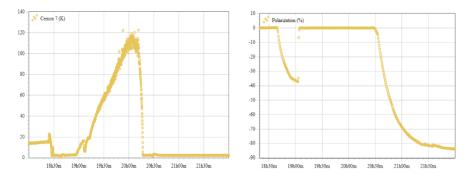
- Production data were collected for both positive (spin up) and negative (spin down) polarizations
- Achieved a maximum of $\sim 96\%$ (- 85%) positive (negative) polarization for NH₃

0

20

40

Time (Minutes)


60

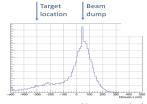
80

-80

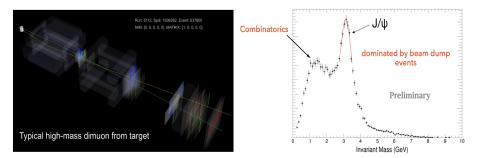
- The target polarization decays over time due to the radiation damage
- Annealing was performed to help restore the target polarization from 40% to 80%
- For the physics data taking, the annealing will be performed once per day, with the polarization flip
- The annealing system is being upgraded to an automated procedure to prevent the target material damage

E1039 Experiment: Goals and Setup	E1039 Polarized Target System	Beam Commissioning Studies	Efforts for the ongoing J/ψ TSSA studies	Summary and Outlook				
Ongoing System Upgrades								

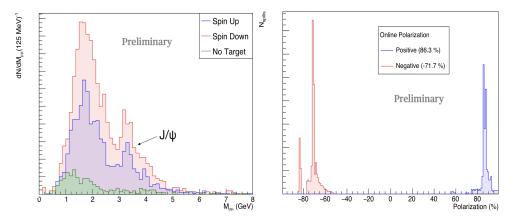
- Repair of Fermilab low conductivity cooling water system
- More LHe storage system: Ordered a third 200L dewar
- Variable attenuator to minimize the power of the DNP microwaves system
- Better heat insulation for the magnet & fridge system
- More advanced target insert with advanced NMR techniques
- Polarization with ND₃ system
- Stable insulation vacuum: Designed and set up a new set of pumps
- Derive the relative luminosity from the LUMI data using the GEANT4 simulation
- More controlled information on beam intensity and beam profile


E1039 Polarized Target System

Beam Commissioning Studie

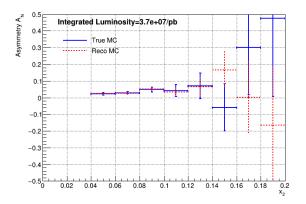

Efforts for the ongoing J/ψ TSSA studies

Dimuon Event Reconstruction


- Detect distinct J/ψ and high-mass dimuon events in the online plots, peak dominated by the beam dump events
- Offline analysis for J/ψ TSSA using the 2024 commissioning data is underway

Dimuon z_{vertex} (cm) 3153 spills (4s); KMag is on; no cuts

Target-like vertex cuts, $|Z_{\mu^+} - Z_{\mu^-}| < 200 \text{ cm}$



SpinQuest Plans for J/\psi TSSA

- J/ψ , $c\bar{c}$ bound state, is sensitive to the extraction of the gluons Sivers functions
- A precise measurement of the TSSA is expected from one-week of dedicated data taking on J/ψ production. The asymmetry and its uncertainty are evaluated as

$$A_N = \frac{2}{f} \sum_{i} \frac{N(x_1, \phi_{S_i}) \sin \phi_{S_i}}{N(x_1, \phi_{S_i})} \quad \text{and} \quad \delta A_N = \frac{\delta_{A_N^{\text{sim}}}}{fP} \sqrt{\frac{L_{sim}}{L_{\text{one-week}}}}$$

- Kinematics between SpinQuest and PHENIX are complimentary:
 - PHENIX: $\sqrt{s} = 200$ GeV and $x_F < 0.3$
 - SpinQuest: $\sqrt{s} = 15$ GeV and $x_F > 0.4$
- Measure the J/ψ TSSA's with very low absolute error $O(10^{-2})$ or less in the given kinematic region of x_F and p_T
- For J/ψ TSSA background studies, see the next talk by C. Kuruppu

Efforts for the ongoing J/ψ TSSA studies

000

Summary and Outlook

- SpinQuest is a high-intensity frontier polarized target experiment: highest-ever proton intensity attempted on a solid polarized target
- Overall, the target system performed well and achieved the highest polarization for NH3
- System upgrades are in progress to support physics data collection
- The production data collected is not sufficient to be published, but the analysis framework to extract the TSSA's for J/ψ production is being established
- Production data-taking will resume in November of 2025 and run until the 2026 Fermilab summer accelerator shutdown
- SpinQuest aims to accumulate production data for about two years. Stay tuned for the physics results

Summary and Outlook

- SpinQuest is a high-intensity frontier polarized target experiment: highest-ever proton intensity attempted on a solid polarized target
- Overall, the target system performed well and achieved the highest polarization for NH3
- System upgrades are in progress to support physics data collection
- The production data collected is not sufficient to be published, but the analysis framework to extract the TSSA's for J/ψ production is being established
- Production data-taking will resume in November of 2025 and run until the 2026 Fermilab summer accelerator shutdown
- SpinQuest aims to accumulate production data for about two years. Stay tuned for the physics results

Thank you!

This work is supported in part by the U.S. DOE award #: DE-FG02-07ER41528

E1039	Experiment:	Goals	and	Setup	
0000	00				

E1039 Polarized Target System 000 Beam Commissioning Studies

Efforts for the ongoing J/ψ TSSA studies 000

Summary and Outlook

Backup