

14–16 Mar 2025 Anaheim Convention Center

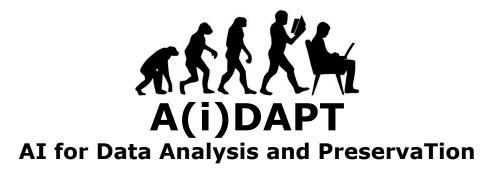
APS GHP 2025 Workshop

11th Workshop of the APS Topical Group on Hadronic Physics

Al generative models for hadron physics analyses

M.Battaglieri (INFN)

on behalf of A(i)DAPT Working Group

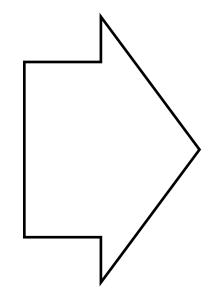


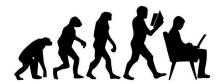
M.Battaglieri - INFN

Al for NP/HEP

- Data collected by NP/HEP experiments are (always) affected by the detector's effects
- Before starting physics analysis the detector's effects unfolding are required
- Traditional observables may not be adequate to extract physics in multidimensional space (multi-particles in the final state)
- At High-Intensity frontiers, data sets are large and difficult to manipulate/preserve

Shall Al support NP/HEP experiments to extract physics from data in a more efficient way?





A(i)DAPT
Al for Data Analysis and PreservaTion

Develop Al-supported procedures to:

- Accurately fit data in multiD space
- Unfold detector effects
- Compare synthetic (Al-generated) to experimental data
- Quantify the uncertainty (UQ)

Collaborative effort (regular meeting)

- ML experts (ODU, JLab)
- Experimentalists (JLab Hall-B)
- Theorists (JPAC, JAM)

Deploy an Al Generative Model to reproduce NP/HEP data

- Unfold detector effects
 - Smearing
 - Acceptance
- Produce physics observables
 - Extract few dimensions cross-section (PDF) (e.g. inclusive electron scattering MC)
 - Extend the closure test to cross-sections in a mutiD phase-space (e.g. 2-pion photoproduction MC)
 - Validate the analysis procedure extracting cross-section from data (e.g. high energy CLAS-gl I 2-pion data)
 - Combine data of the same final state taken in different kinematics (e.g. low energy CLAS-gl I 2-pion data)
 - Combine data from different final states (e.g. CLAS-g11 3-pion/ω data)
- Extract physics out of data
 - Extract cross-section and amplitudes in a 2-body reaction (e.g. ππ scattering MC)
 - Extract moments of angular distributions and fit with a model (e.g. 2-pion pthotoproduction model MC)
 - Extract amplitudes from a multi-particle exclusive channel (e.g. CLAS-gl I 2-pion data)
 - Extract amplitudes in multi- coupled-channel analysis (e.g. CLAS-g1 I 2-pion + 3-pion/ω data)
 - Connect NN features to different physics processes (e.g. baryon and meson resonances in CLAS-gll 2-pion data)

Deploy an Al Generative Model to reproduce NP/HEP data

- Unfold detector effects
 - Smearing ✓
 - Acceptance √
- Produce physics observables
 - Extract few dimensions cross-section (PDF) (e.g. inclusive electron scattering MC) ✓
 - Extend the closure test to cross-sections in a mutiD phase-space (e.g. 2-pion photoproduction MC) 🗸
 - Validate the analysis procedure extracting cross-section from data (e.g. high energy CLAS-gl I 2-pion data) in progress

This talk

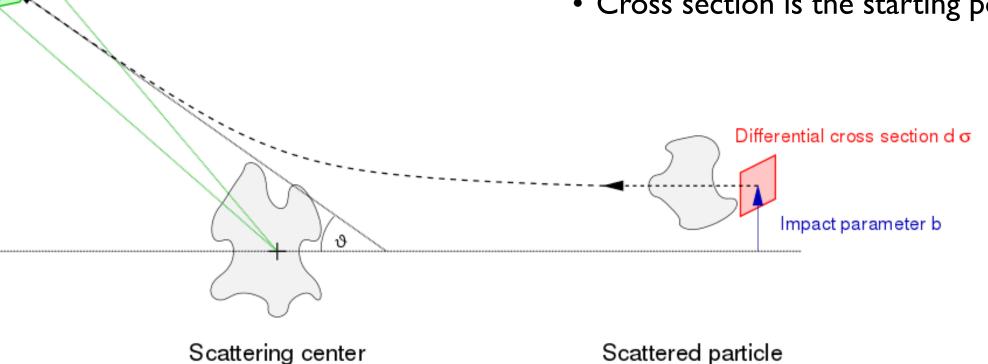
- Combine data of the same final state taken in different kinematics (e.g. low energy CLAS-gl I 2-pion data) in progress
- Combine data from different final states (e.g. CLAS-g1 I 3-pion/ω data)
- Extract physics out of data
 - Extract cross-section and amplitudes in a 2-body reaction (e.g. ππ scattering MC) in progress
 - Extract moments of angular distributions and fit with a model (e.g. 2-pion pthotoproduction model MC) in progress
 - Extract amplitudes from a multi-particle exclusive channel (e.g. CLAS-gl I 2-pion data)
 - Extract amplitudes in multi- coupled-channel analysis (e.g. CLAS-g1 I 2-pion + 3-pion/ω data)
 - Connect NN features to different physics processes (e.g. baryon and meson resonances in CLAS-gll 2-pion data)

• ...

The cross section in particle physics

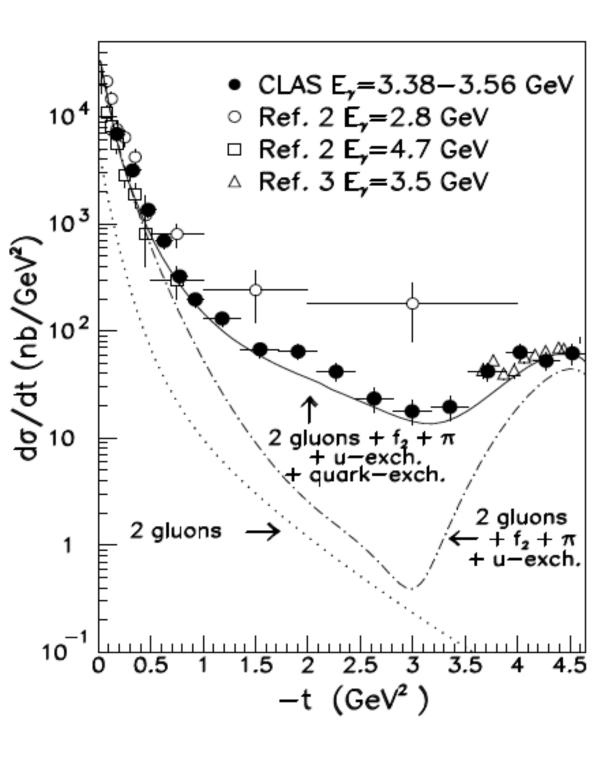
$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = (2\pi)^4 m_i m_f rac{p_f}{p_i} ig|T_{fi}ig|^2.$$

- The cross section is related to the transition probability between an initial to a final state
- In case of scattering, cross sections provides information about the elementary interaction
- Cross section is expressed as squared sum of scattering amplitudes (complex functions) depending on the kinematic Lorentz-invariant of the problem and embedding the interaction properties
- It is derived by measuring the momentum distributions of reaction particle (at different CM energy)
- Correlations between particles in the final state reflects the underlying dynamics
- Cross sections fully replaces the 4-mom data sample in a compact and efficient way
- Cross section is the starting point for any higher level physics analysis



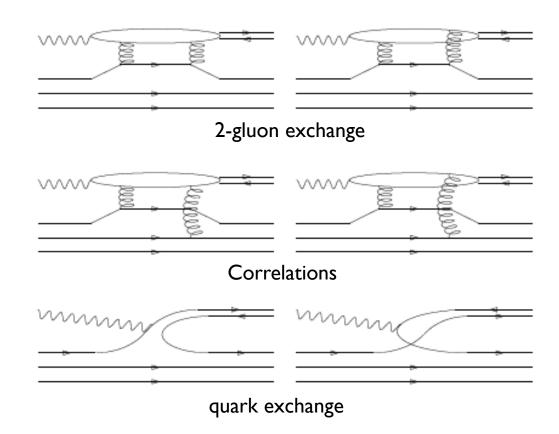
- Traditional approach: particles (4-momenta) measured into the detector, extract the relevant observables, extract physics mechanisms
- Cross section **preserves** this information as replacement for the original particle-by-particle scattering information

Differential solid angle d Ω



JLab-CLAS g6 ω photo production at large momentum transfer

$$\gamma p \rightarrow p \omega$$



- $2 \rightarrow 2$ scattering (no polarisation)
- Initial state: known
- Final state: 2 x 3
- Parameters: $(2 \times 3) 4 = 2$
- Possible choice: -t and ϕ
- the physics depends only on one variable (-t)
- It worked (and still works!) well if limited to channels with a single variable
- Xsec, Polarization observables, angular distribution, decay matrix, ...

- 2 → 3 scattering (no polarization)
- Initial state: known
- Final state: 3 x 3
- Parameters: $(3 \times 3) 4 = 5$ (E_Y fixed)
- Possible choice: $M^2_{\pi\pi}$, $M^2_{p\pi}$ θ_{π} , α , ϕ

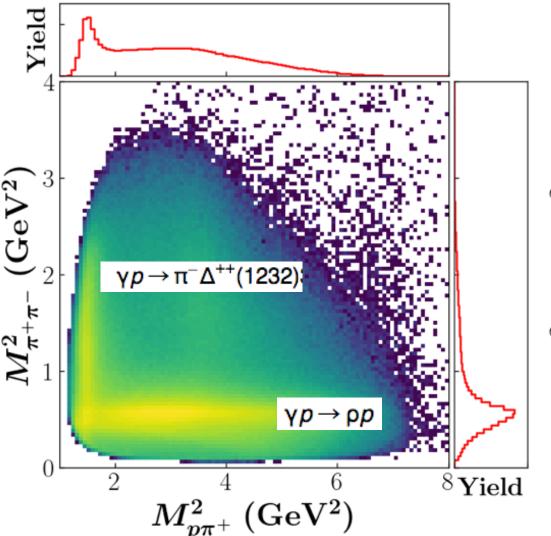
CLAS gII 2π photo production

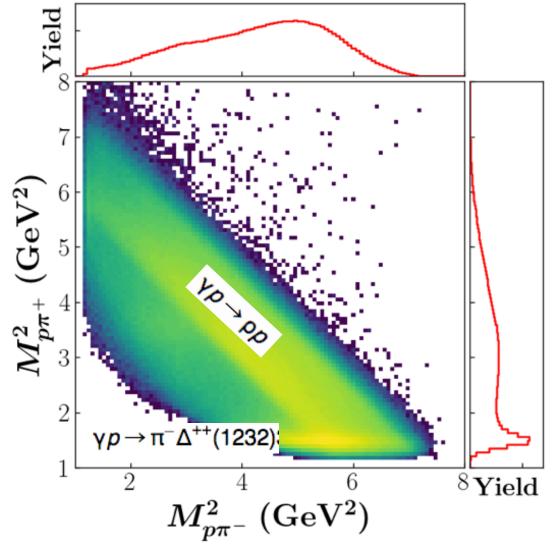
- $E_Y = (3.0 3.8)$ GeV $Y p \rightarrow p \pi^+ \pi^-$ exclusive reaction
 - data set analyses so far γ p \rightarrow p π^+ (π^-) + small contamination of γ p \rightarrow p π^+ (more than a missing π^-)
 - complicated dynamic for the overlap of ($p\pi$) to form Δ baryon resonances and ($\pi\pi$) to form meson resonances

$$\frac{d\sigma (\gamma p \rightarrow p \pi^{+}\pi^{-})}{dM_{\pi\pi} dM_{p\pi} d\cos(\theta_{\pi}) d\alpha d\phi}$$

- It does not work (in practice) when you have several independent variables: multi-particle final states (spectroscopy) or multi-variable correlations (SIDIS)
- In the integration to reduce to I-dim all correlations are lost

Al may provide a new way to look at data and extract observables and physics interpretation (on event by event base)





Credit: Y. Alanazi Awadh, , P. Ambrozewicz, G. Costantini A. Hiller Blin, E. Isupov, T. Jeske, Y. Li, L. Marsicano W. Menlnitchouk, V. Mokeev, N. Sato, A. Szczepaniak, T. Viducic

Detector unfolding

- Detector effects make measured observables (detector-level) DIFFERENT from 'true' observables (vertex-level)
 - I. **Resolution**: any measurement has an experimental resolution that may hide or washout the effect searched for
 - A spike could be not resolved, the measurement may extend in an unphysical region (e.g. negative squared missing mass)
 - II. Acceptance: any measurements only access a limited region of the phase space.

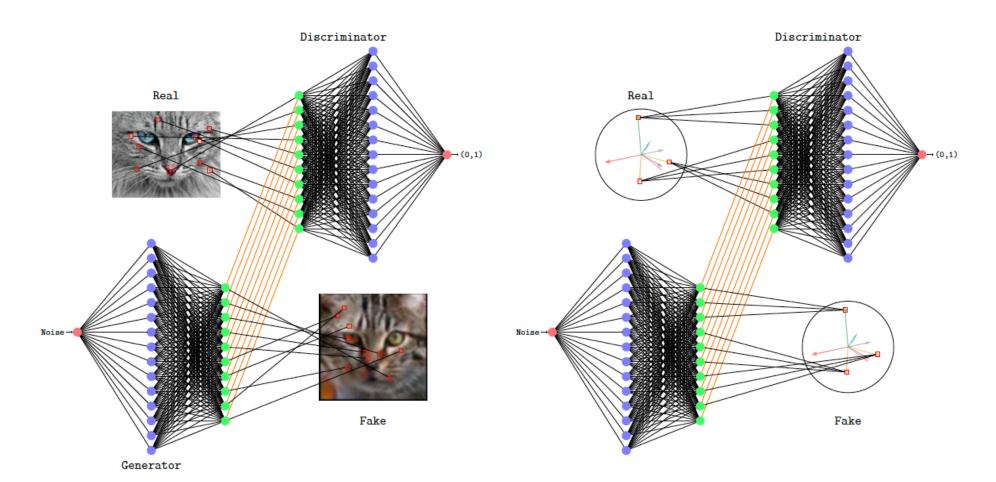
How to recover the unmeasured region?

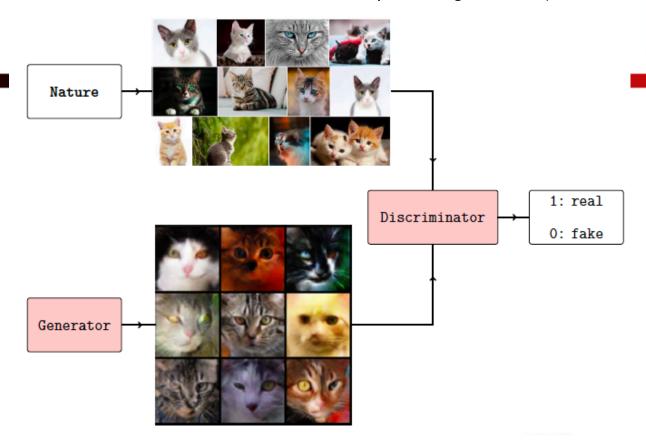
- Interpolation: holes in the phase space
- Extrapolation: border of the accessible phase space
- For both effects, one needs to quantify the systematic errors introduced to the vertex-level observables
 - Mitigation strategy:
 - Resolution: closure test with a reasonable model of the detector using a detector proxy (parametric or GEANT-based)
 - Acceptance: 'fiducial volumes' to exclude unmeasured or poorly-measured regions verifying the training convergence

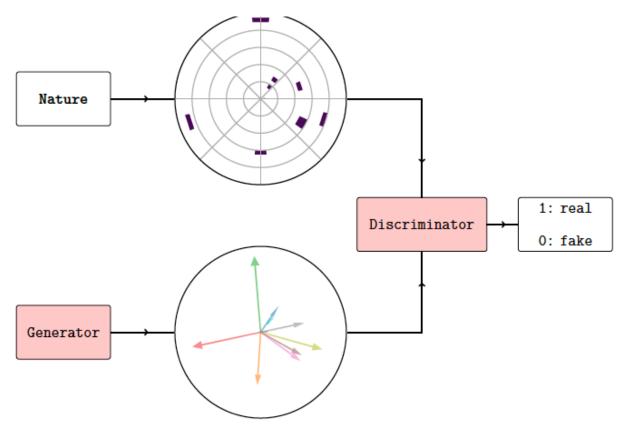
M.Battaglieri - INFN

Generative Adversarial Network (GANs)

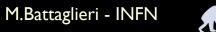
- The colored boxes are built using NNs
- Discriminator is trained to output "real" for Nature samples
- Generator is trained to fool the discriminator
- The Generator can be used as data compression tool
- Typical size for the Generator: O(MB) to be compared to NP/HEP experiments data set O(GB/TB)
- Simple to distribute instead of events stored on tapes



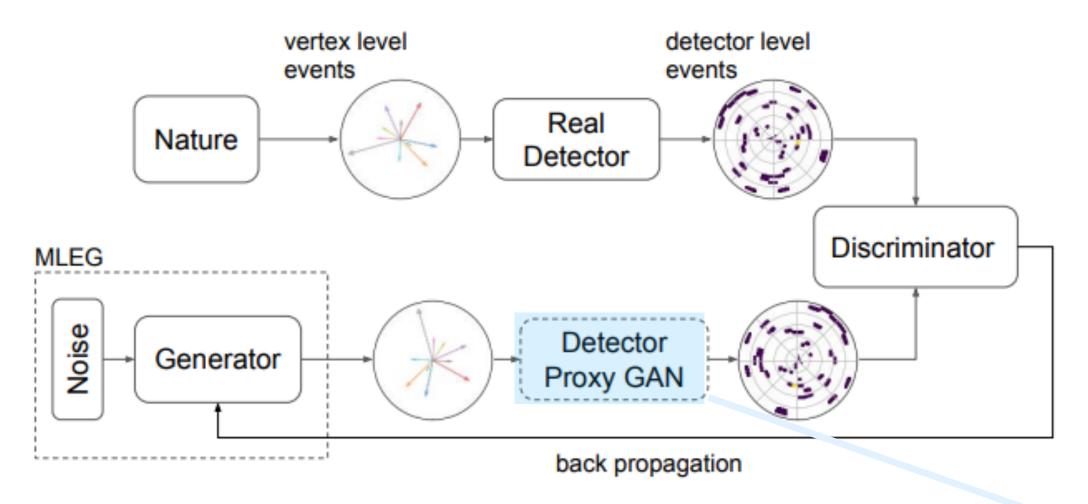




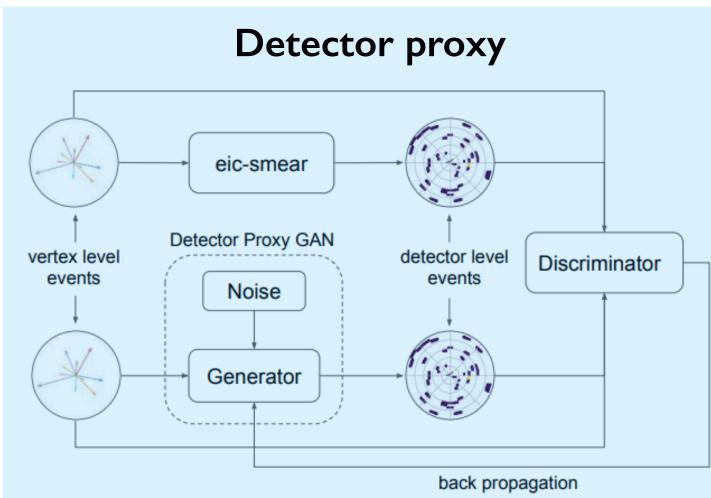
Credit:Y. Li, N.Sato



ML Event Generator GAN scheme



- 100-d white noise entered at 0, unit standard dev.
- Generator: 5 hidden layers / 512 neurons per layer, ReLU activation function. Last layer connected to 2 neurons output to generate V_1 and V_2 variables
- Discriminator: same NN architecture as for the generator
- Detector proxy: similar architecture
- Least Squares GAN (LSGAN)
- Trained adversarially for 100000 epochs (pass through the training data set)
- Adam's optimizer



- eic-smear: parametric smearing routine for the Electron Ion Collider detectors (no GEANT-based simulations)
- Parameters tuned to reproduce ZEUS/H1 detectors
- Full 4π acceptance

I) GAN training w/o detector effects

Pseudo-data sample (JAM)

- Inclusive electron DIS generated at E_{CM}=318.2 GeV (HERA kinematics)
- 2-dim differential cross section dσ/dxdO²
- Lorentz boosted from CM to Lab (+ uniform azimuthal angle)
- To reduce violation of momentum conservation on the edge of the phase space due to smearing effects, electron momentum is replaced by new variables:

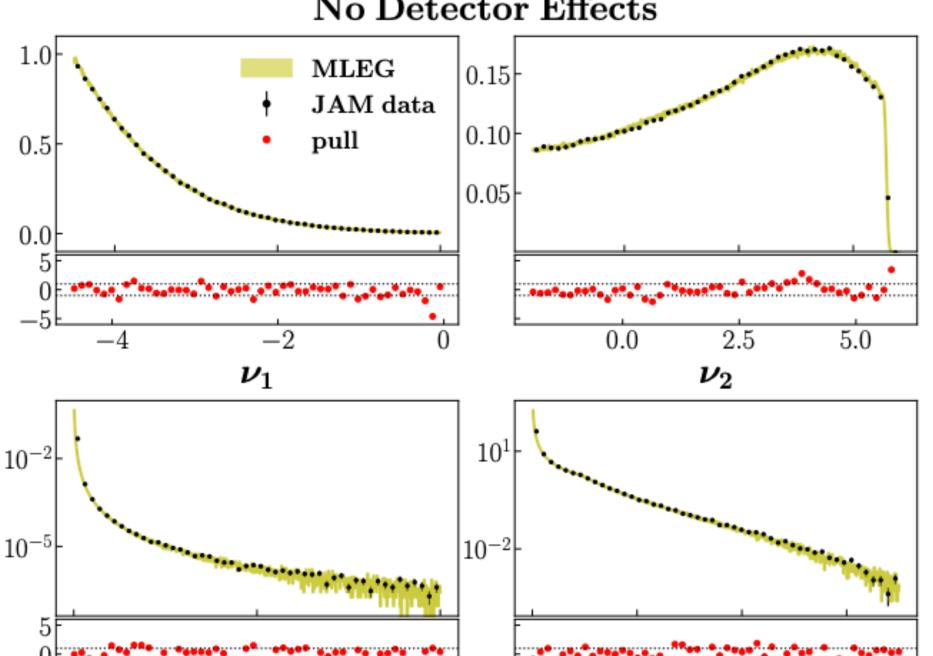
$$u_1 = \ln \left((k'_0 - k'_z) / 1 \,\text{GeV} \right),$$

$$\nu_2 = \ln \left((2E_e - k'_0 - k'_z) / 1 \,\text{GeV} \right),$$

Uncertainty Quantification via pull calculation

- $\mathrm{pull} \ = \ \frac{\mathrm{E}\big[\mathcal{P}(\mathcal{O}|\mathrm{bin})\big]_{\mathrm{GAN}} \mathrm{E}\big[\mathcal{P}(\mathcal{O}|\mathrm{bin})\big]_{\mathrm{JAM}}}{\sqrt{\mathrm{V}\big[\mathcal{P}(\mathcal{O}|\mathrm{bin})\big]_{\mathrm{GAN}} + \mathrm{V}\big[\mathcal{P}(\mathcal{O}|\mathrm{bin})\big]_{\mathrm{JAM}}}}$ Metric: pull
- Bootstrap with 10 independently trained GANs

No Detector Effects



1000

500

 $Q^2 ({
m GeV^2})$

0.0

0.6

0.2

I) GAN training w/o detector effects

Pseudo-data sample (JAM)

- Inclusive electron DIS generated at E_{CM} =318.2 GeV (HERA kinematics)
- 2-dim differential cross section dσ/dxdQ2
- Lorentz boosted from CM to Lab (+ uniform azimuthal angle)
- To reduce violation of momentum conservation on the edge of the phase space due to smearing effect, electron momentum is replaced by new variables:

$$\nu_1 = \ln ((k'_0 - k'_z)/1 \,\text{GeV}),$$

$$\nu_2 = \ln ((2E_e - k'_0 - k'_z)/1 \,\text{GeV}),$$

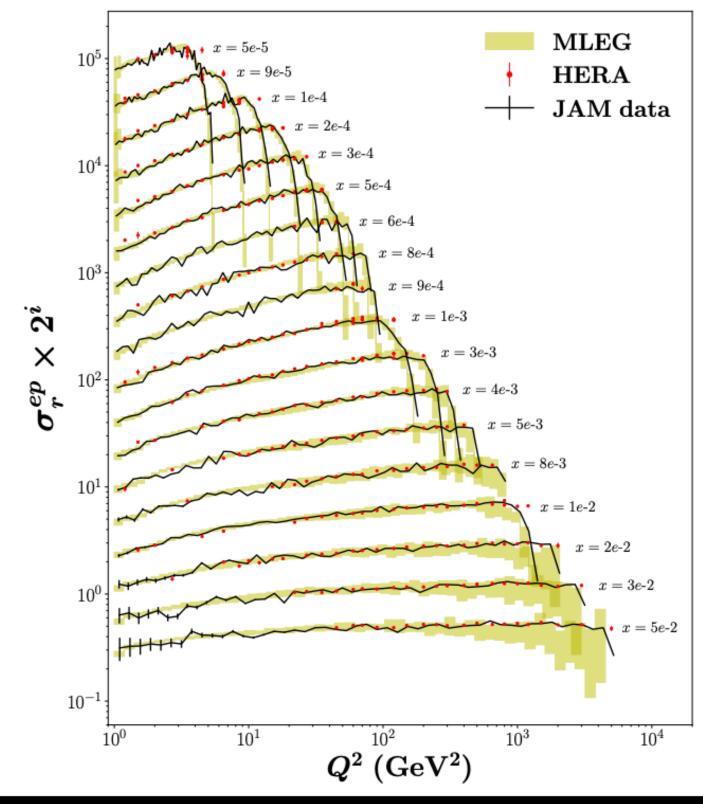
Uncertainty Quantification via pull calculation

• Metric:
$$pull$$

$$pull = \frac{E[\mathcal{P}(\mathcal{O}|\mathrm{bin})]_{\mathrm{GAN}} - E[\mathcal{P}(\mathcal{O}|\mathrm{bin})]_{\mathrm{JAM}}}{\sqrt{V[\mathcal{P}(\mathcal{O}|\mathrm{bin})]_{\mathrm{GAN}} + V[\mathcal{P}(\mathcal{O}|\mathrm{bin})]_{\mathrm{JAM}}}}$$

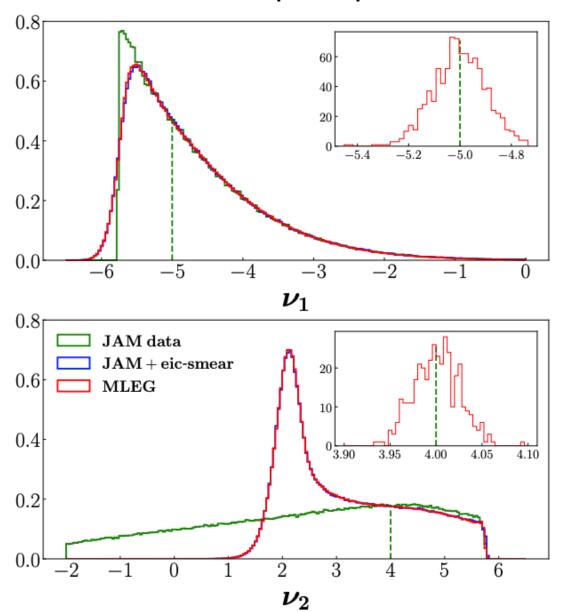
• Bootstrap with 10 independently trained GAN

No Detector Effects

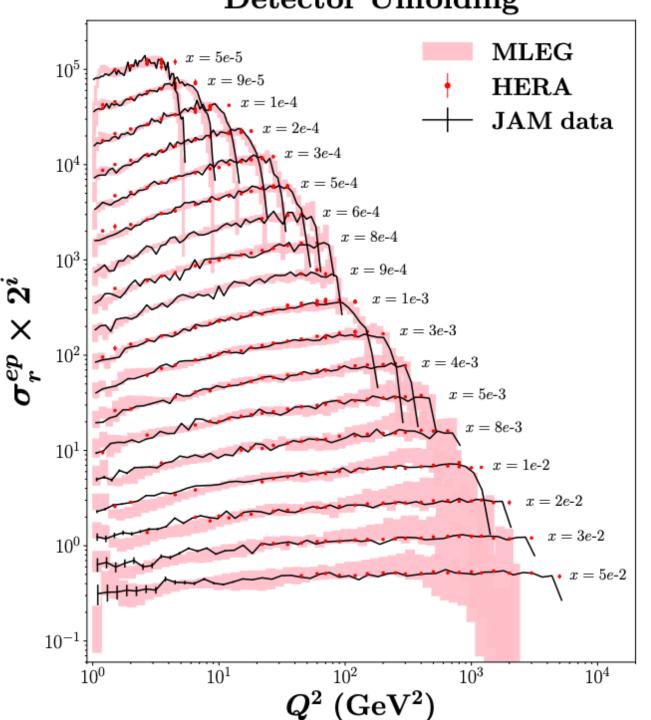


II) GAN training WITH detector effects

• eic-smear introduces significant distortions to the detector level sample in particular on V_2



Detector Unfolding



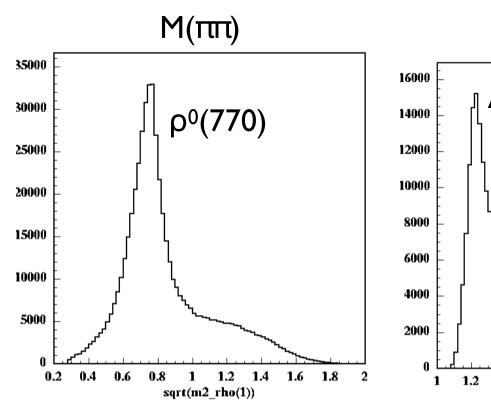
Conclusions

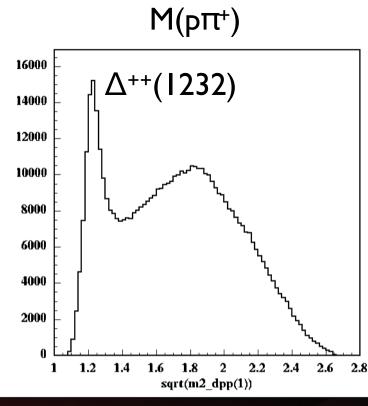
- The 'closure test' was successful
- 'generated' events (trained on generated)
- 'reconstructed' events (trained on reconstructed)
- 'generated' (trained on reconstructed) with larger error bars, in particular on the edge of the phase space
- The PDFs are correctly recovered

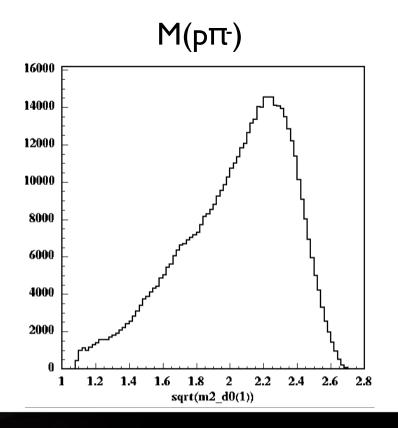


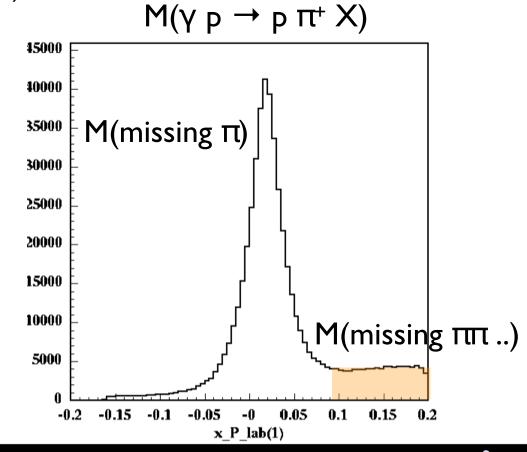
CLAS gll kinematics

- Data set used by CLAS Collaboration for many publications
- Fiducial cuts (p, Θ, φ) as used in published analysis
- All four topologies are available but only focused on $\gamma p \rightarrow p \pi^+ (\pi^-)$
- Final exclusive 2π state identified by missing mass technique (variables reconstructed by energy/momentum conservation)
- Multipion background comes from $\gamma p \rightarrow p \omega^0 \rightarrow p \pi^+ \pi^- \pi^0$
- At E_Y=3-4 GeV reaction dynamics dominated by ρ^0 photo production ($\gamma p \rightarrow \rho \rho^0$) and Δ^{++} resonance excitation ($\gamma p \rightarrow \Delta^{++} \pi^-$)







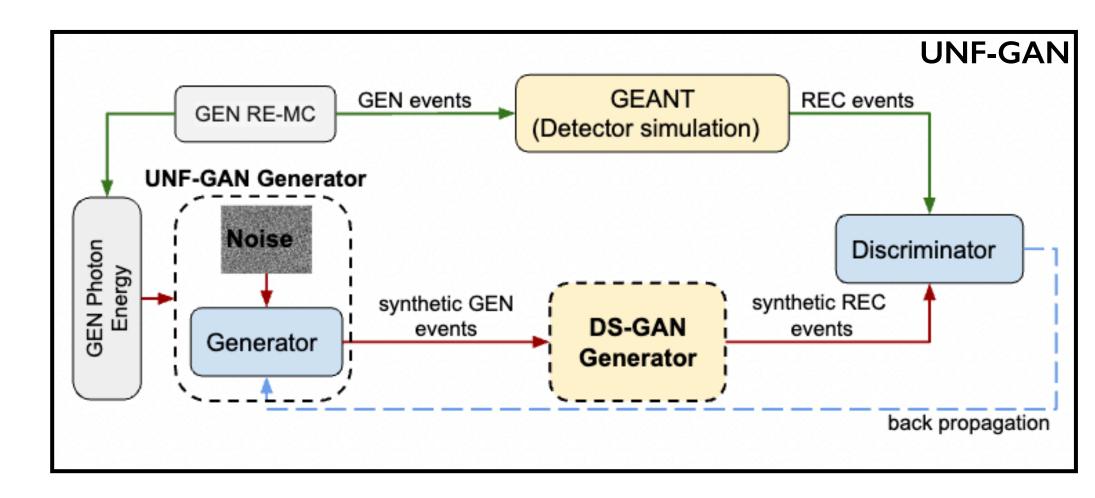


CLOSURE TEST:

Demonstrate GANs reproduce 'true' multi-dim correlations, unfolding CLAS detector effects, comparing vertex-level (GEN) events with GANs GEN SYNT events, trained at detector-level and unfolded with a (GANs-based) detector proxy

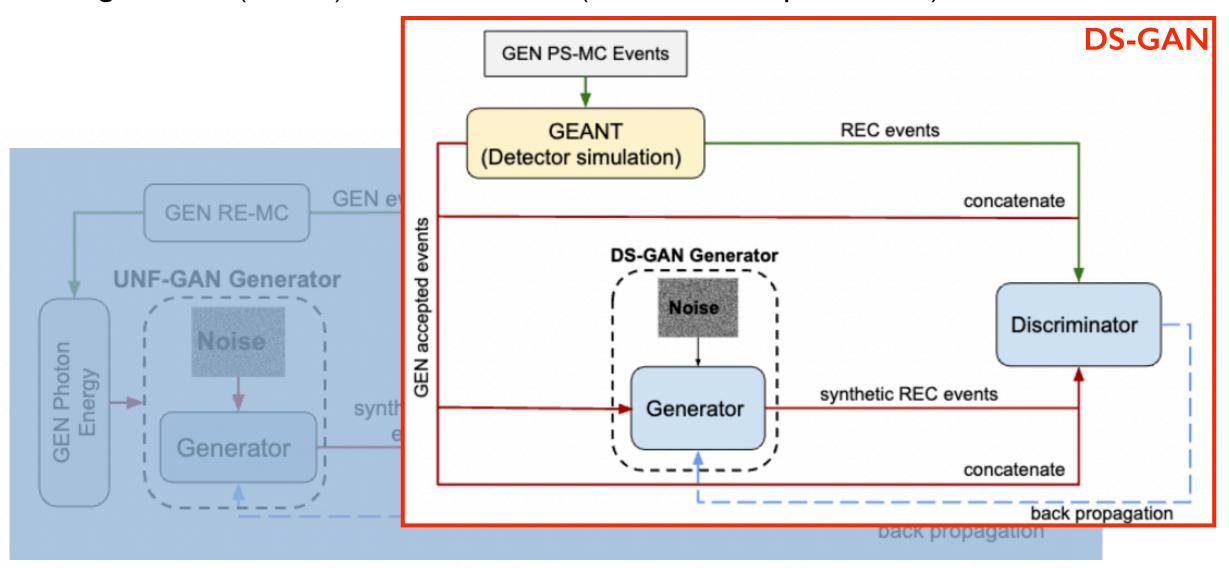
- I. Generate events with a (realistic) Monte Carlo 2π photo production model (RE-MC GEN pseudodata)
- 2. Apply detector effects (acceptance and resolution) via GSIM-GEANT (RE-MC REC pseudodata)
- 3. Deploy a secondary GAN (DS-GAN) to learn detector effects using an independent MC event generator (PS-MC) + GSIM-GEANT (GEN and REC pseudodata)
- 4. Deploy the unfolding GAN (UNF-GAN) that includes the DS-GAN, and train it with RE-MC REC pseudodata
- 5. Compare UNF-GAN GEN SYNT data to RE-MC GEN pseudodata

[if but works, replace RE-MC REC pseudo data with CLAS data in the training to unfold the vertex-level experimental distributions]



M.Battaglieri - INFN

Deploy a secondary GAN (DS-GAN) to learn detector effects using an independent MC event generator (PS-MC) + GSIM-GEANT (GEN and REC pseudodata)



Uncertainty Quantification via pull calculation

• Bootstrap with 20 independently trained GAN

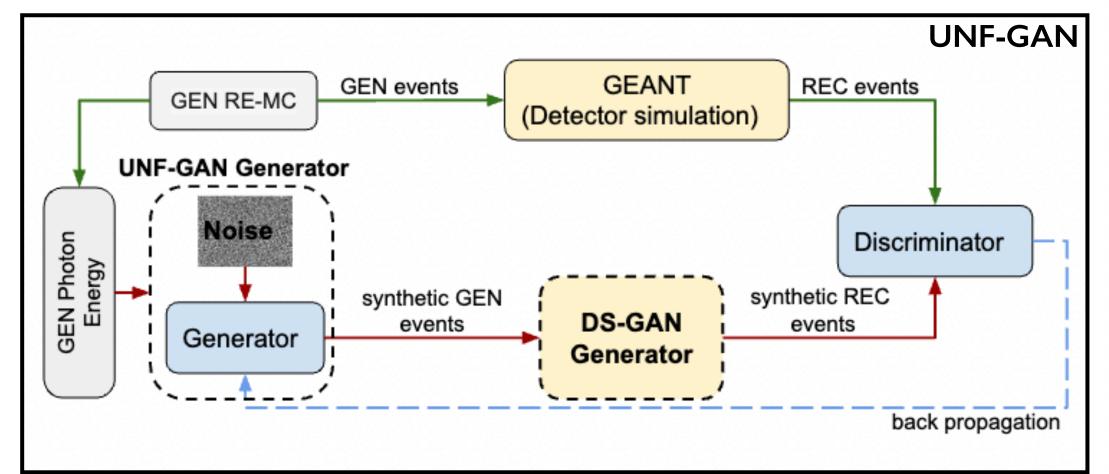
DS-GAN learned the CLAS detector effects!

PS-MC REC events MC pseudodata vs. DS-GAN synthetic data Yield $M_{p\pi^-}^2$ (GeV²) $M_{\pi^+\pi^-}^2 \, ({ m GeV^2})$ Yield 0.15 t_{π^+} (GeV²) **CLAS** resolution pseudodata Δp (GeV)

synthetic data

Deploy the unfolding GAN (UNF-GAN) that includes the DS-GAN, and train it with RE-MC REC pseudodata

- UNF-GAN trained with RE-MC REC pseudodata (exp data proxy)
- DS-GAN used to unfold CLAS detector effects (within acceptance)



5. Compare UNF-GAN GEN SYNT data to RE-MC GEN pseudodata

Good agreement ($\pm 1\sigma$) at vertex-level for training variables

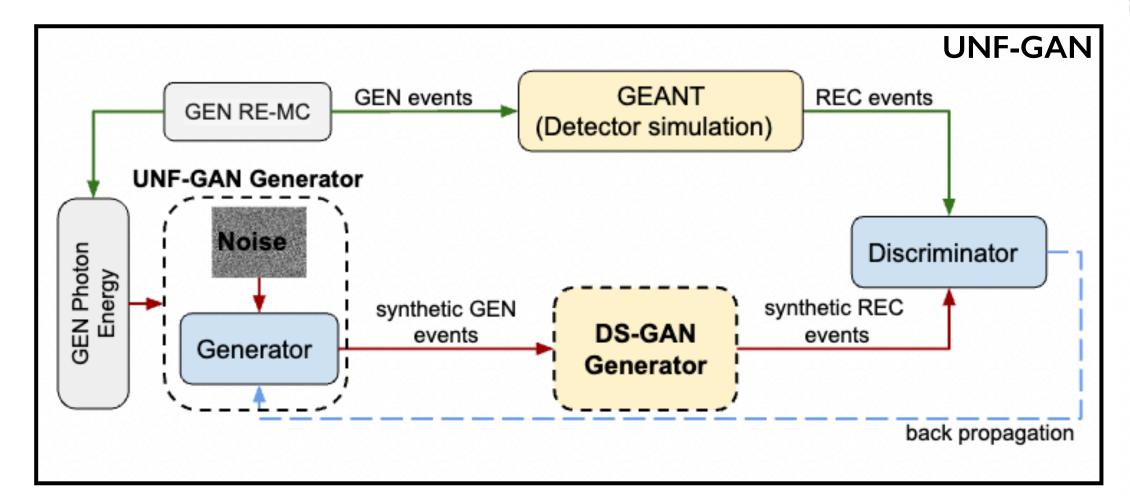
RE-MC GEN pseudodata vs. UNF-GAN SYN data



 Systematic of the full procedure (two GANs) estimated by bootstrap with 20+20 independently trained GANs

Deploy the unfolding GAN (UNF-GAN) that includes the DS-GAN, and train it with RE-MC REC pseudodata

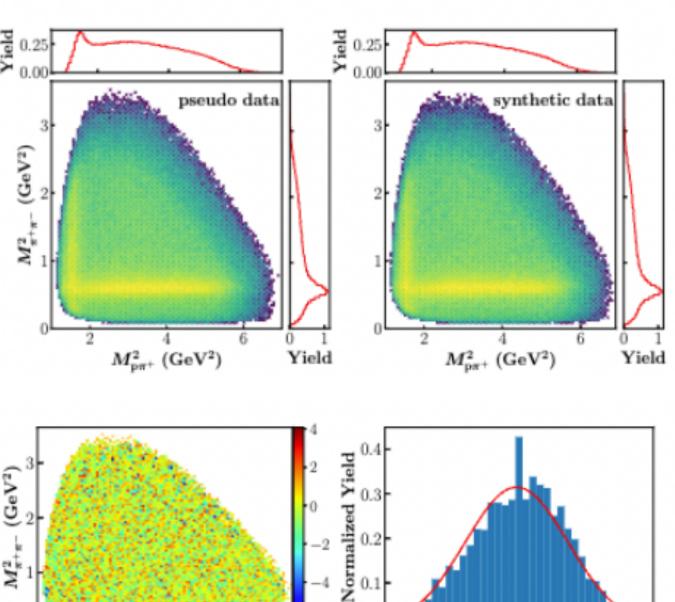
- UNF-GAN trained with RE-MC REC pseudodata (exp data proxy)
- DS-GAN used to unfold CLAS detector effects (within acceptance)



5. Compare UNF-GAN GEN SYNT data to RE-MC GEN pseudodata

Good agreement (± Io) for 2D distributions (correlations)

RE-MC GEN pseudodata vs. UNF-GAN SYN data

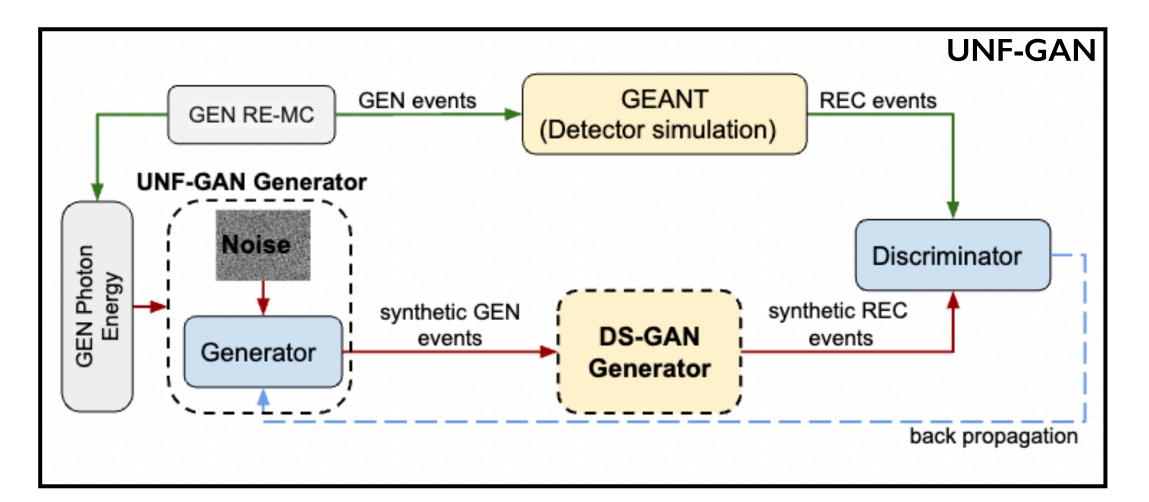


2D pulls

 $M_{p\pi^+}^2$ (GeV²)

Pull Values

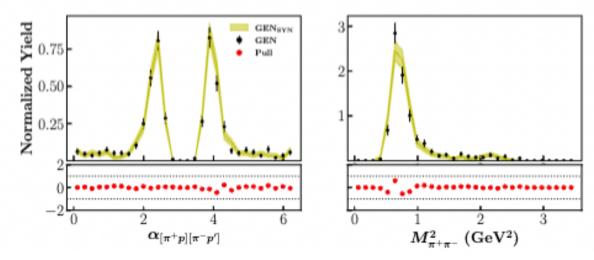
- 4. Deploy the unfolding GAN (UNF-GAN) that includes the DS-GAN, and train it with RE-MC REC pseudodata
 - UNF-GAN trained with RE-MC REC pseudodata (exp data proxy)
 - DS-GAN used to unfold CLAS detector effects (within acceptance)



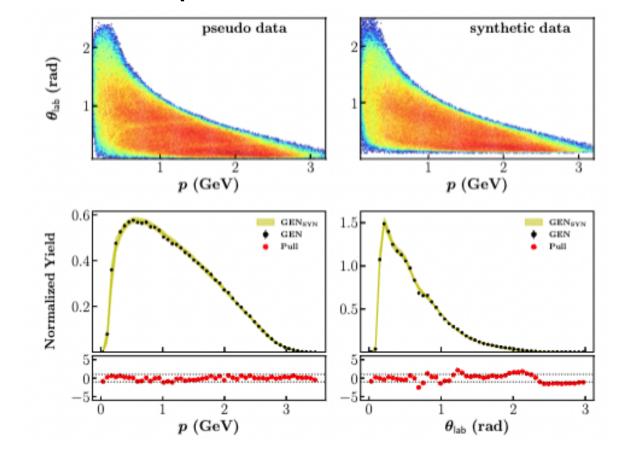
5. Compare UNF-GAN GEN SYNT data to RE-MC GEN pseudodata

Good agreement ($\pm 1\sigma$) for lab variables and in 4D bins

Distribution in 4D bins



RE-MC GEN pseudodata vs. UNF-GAN SYN data



Deploy an Al Generative Model to reproduce NP/HEP data

- Unfold detector effects
 - Smearing
 - Acceptance
- Produce physics observables

- We demonstrated (closure-test) that GANs:
 - I. reproduce detector smearing
- II. unfold smearing effect
- III. reproduce multi-dim distribution

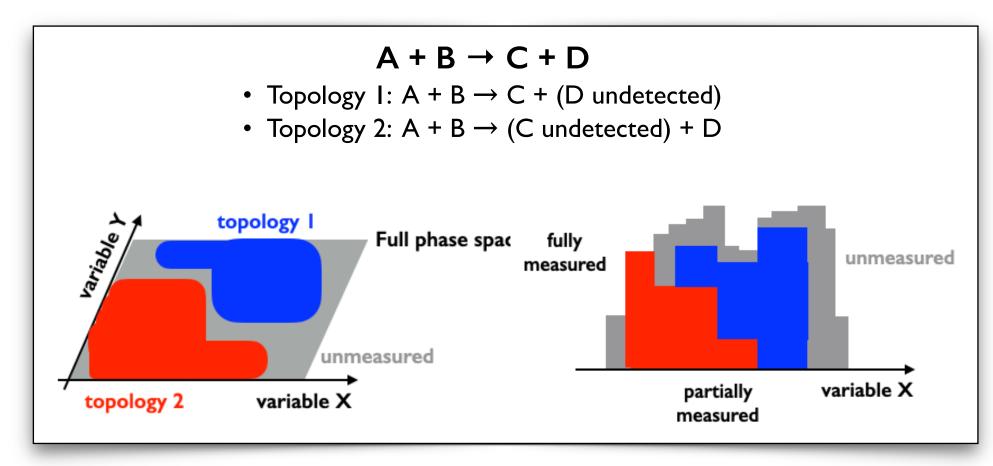
- Extract few dimensions cross-section (PDF) (e.g. inclusive electron scattering MC)
- Extend the closure test to cross-sections in a mutiD phase-space (e.g. 2-pion photoproduction MC)
- Validate the analysis procedure extracting cross-section from data (e.g. high energy CLAS-gl I 2-pion data)
- Combine data of the same final state taken in different kinematics (e.g. low energy CLAS-gl I 2-pion data)
- Combine data from different final states (e.g. CLAS-g11 3-pion/ω data)
- Extract physics out of data
 - Extract cross-section and amplitudes in a 2-body reaction (e.g. ππ scattering MC)
 - Extract moments of angular distributions and fit with a model (e.g. 2-pion pthotoproduction model MC)
 - Extract amplitudes from a multi-particle exclusive channel (e.g. CLAS-gl I 2-pion data)
 - Extract amplitudes in multi- coupled-channel analysis (e.g. CLAS-g1 I 2-pion + 3-pion/ω data)
 - Connect NN features to different physics processes (e.g. baryon and meson resonances in CLAS-gll 2-pion data)

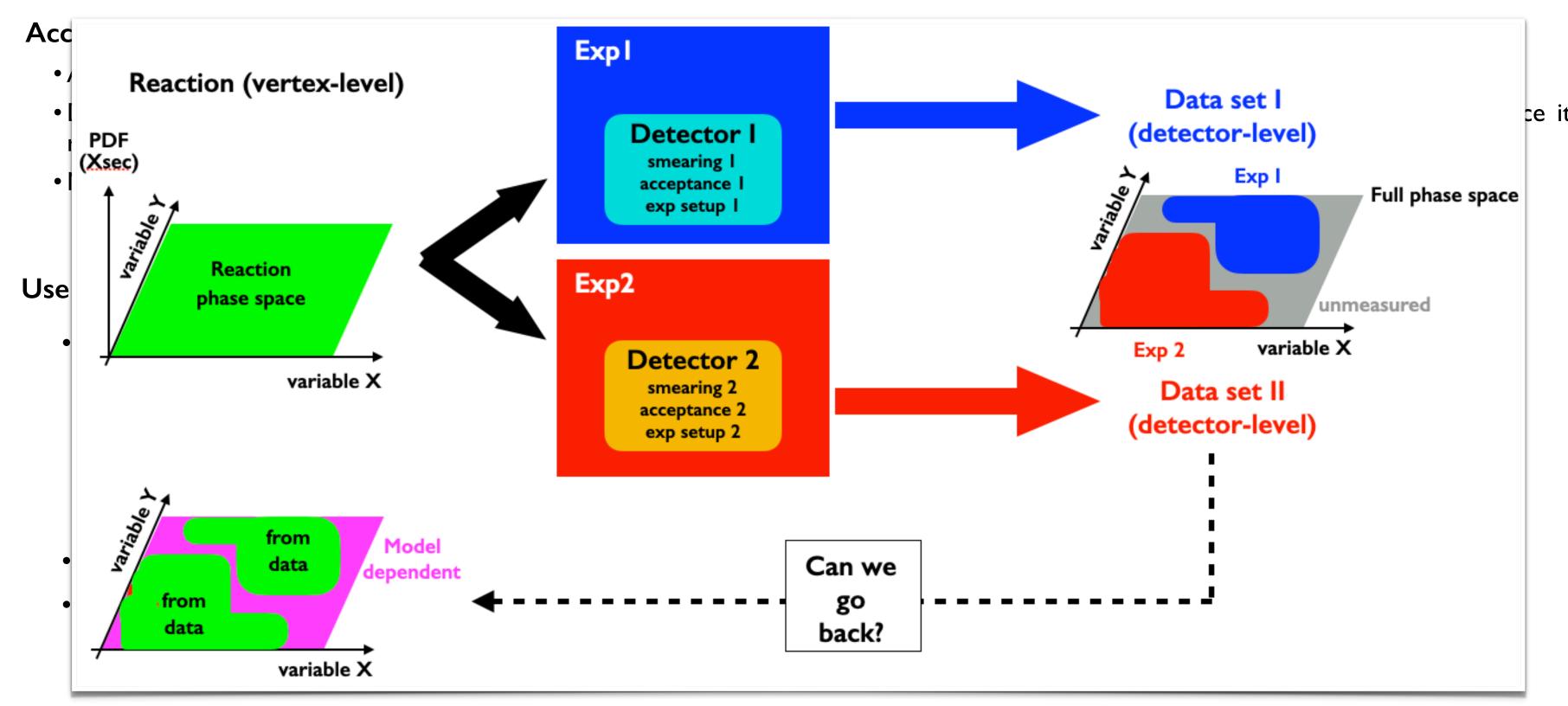
Acceptance

- Any measurement covers only a fraction of the reaction phase-space
- Difficulty: the cross section (Probability Density Function) can not be constrained by general rules (other than being positive) since it reflects the underlying (a-priori unknown) physics
- No model-independent extrapolation of PDF outside detector's acceptance is possible (based on measured phase space)

Use GANs to to minimize the model dependence

- extend as much as possible the measured phase space
 - combining vertex-level data from different experiments (after smearing unfolding)
 - combining measurements of different topologies measured by the same detector
- reproduce data within the detector acceptance
- use a physics model to generate pseudo-data (only) in unmeasured regions



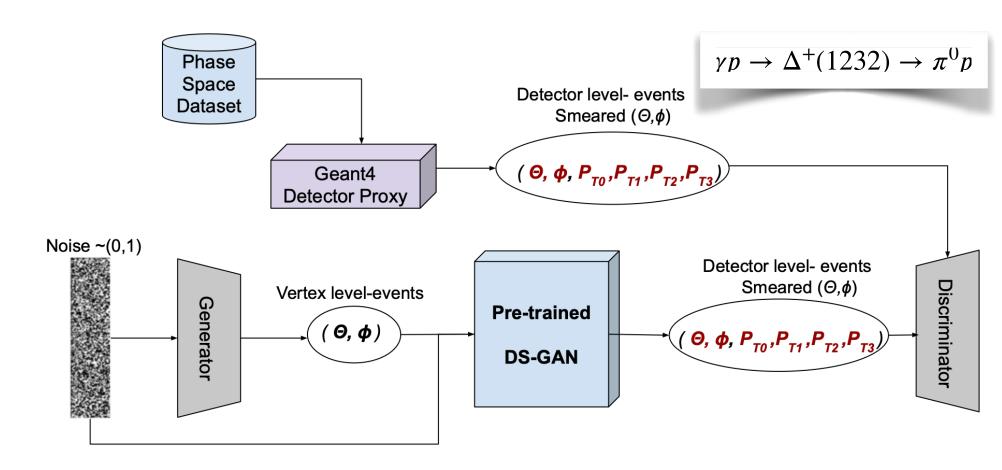


Acceptance

- Any measurement covers only a fraction of the reaction phase-space
- Difficulty: the cross section (Probability Density Function) can not be constrained by general rules (other than being positive) since it reflects the underlying (a-priori unknown) physics
- No model-independent extrapolation of PDF outside detector's acceptance is possible (based on measured phase space)

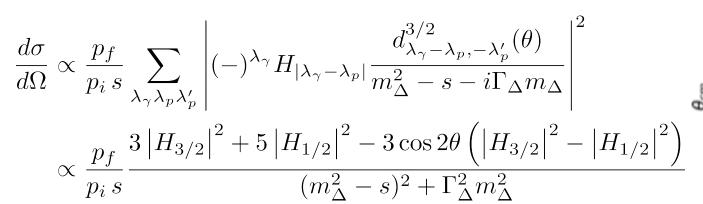
Use GANs to to minimize the model dependence

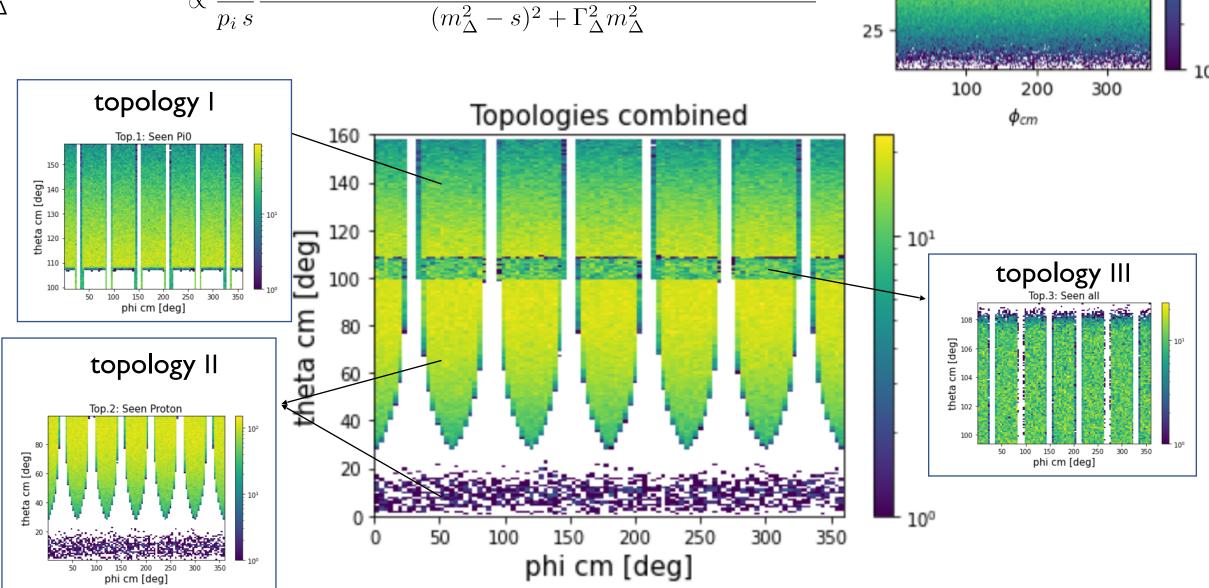
- extend as much as possible the measured phase space
 - combining vertex-level data from different experiments (after smearing unfolding)
 - combining measurements of different topologies measured by the same detector
- reproduce data within the detector acceptance
- use a physics model to generate pseudo-data (only) in unmeasured regions



- Simple 2-body process: $\gamma p \to \Delta^+(1232) \to \pi^0 p$
- Two independent variables (at fixed E): θ_{cm} ϕ_{cm}
- Monte Carlo event generator
- Breit-Wigner with two parameters: m_{Δ} and Γ_{Δ}

- Detector acceptance (CLAS) implemented via fiducial cuts (coils, minimum proton momentum and angle in the lab frame)
 - topology I: $\gamma p \rightarrow (p) \pi^0$ (proton missing)
 - topology II: $\gamma p \rightarrow p (\Pi^0) (\Pi^0 \text{ missing})$
 - topology III: $\gamma p \rightarrow p \pi^0$ (all detected)
 - [topology 0: unmeasured]
- Effective smearing function to fully mimic detector-effects





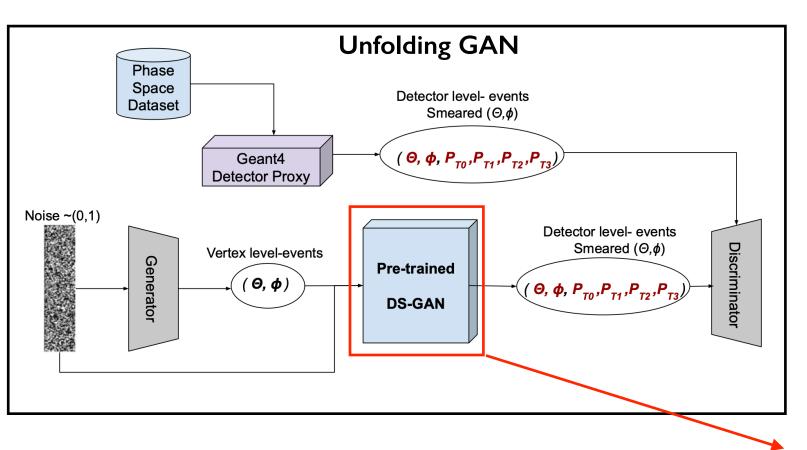
Credit: T. Vittorini , Y. Alanazi, T. Alghamdi, Y. Li

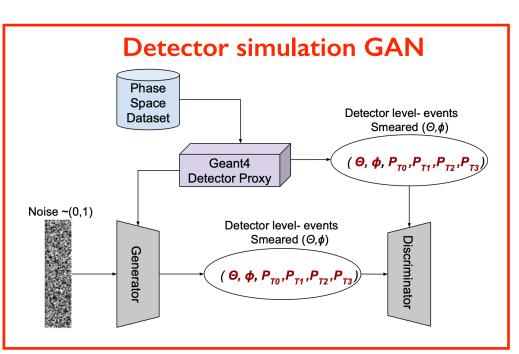
150

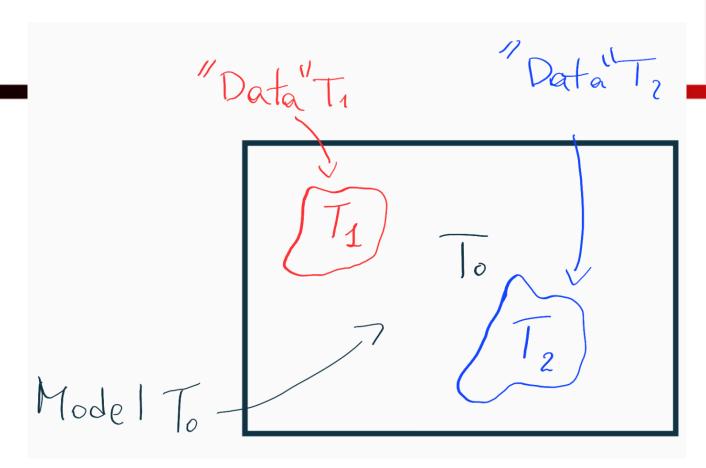
75

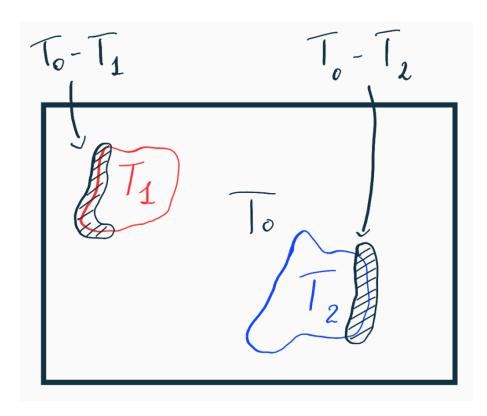
50

- Build a single generative model which will generate vertex level events according to each topology
- Pseudo-data distributed according to the correct "experimental" cross-sections inside the measured regions T_1 and T_2
- Pseudo-data according to a given model in the unmeasured region T₀
- The AI model should include $P_{\text{detection}} \neq 0$ or I (topologies are not orthogonal)
- Each event is defined by $(\theta, \phi, P_{T_0}, P_{T_1}, P_{T_2})$

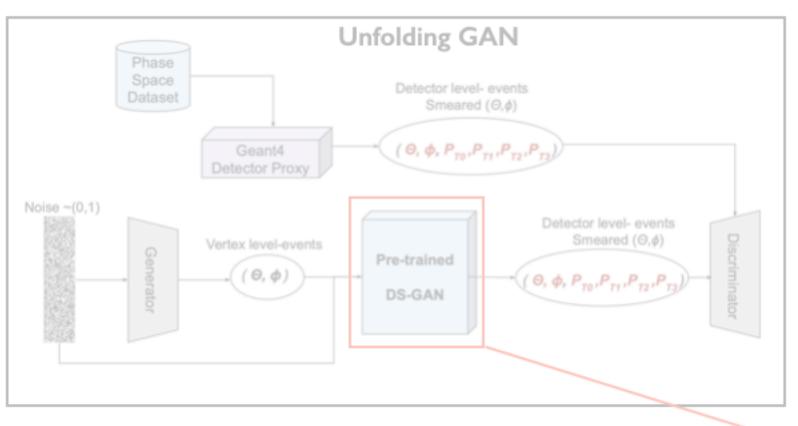


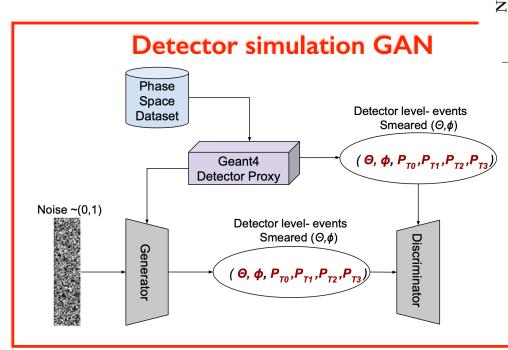


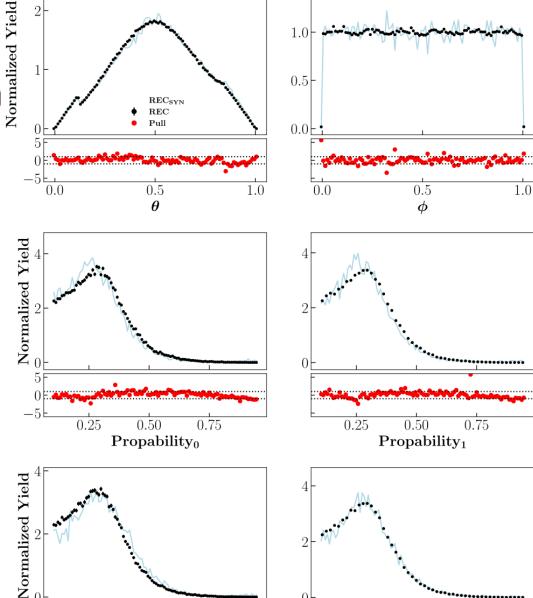




- Build a single generative model which will generate vertex level events according to each topology
- Pseudo-data distributed according to the correct "experimental" cross-sections inside the measured regions T₁ and T₂
- Pseudo-data according to a given model in the unmeasured region T_0
- The Al model should include $P_{\text{detection}} \neq 0$ or 1 (topologies are not orthogonal)
- Each event is defined by $(\theta, \phi, P_{T_0}, P_{T_1}, P_{T_2})$

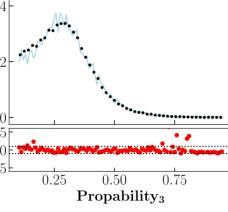






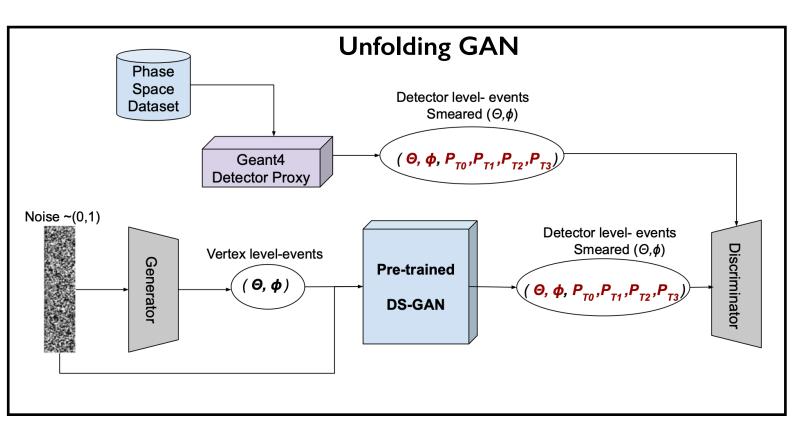
0.50

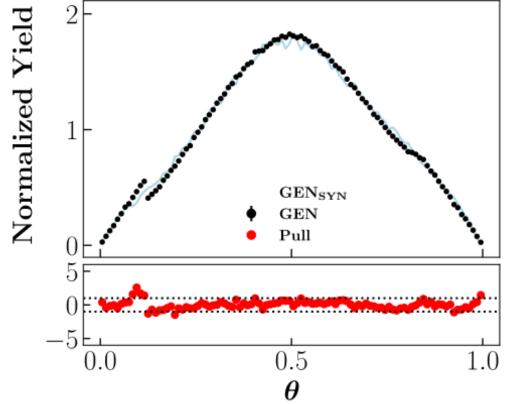
 $Propability_2$

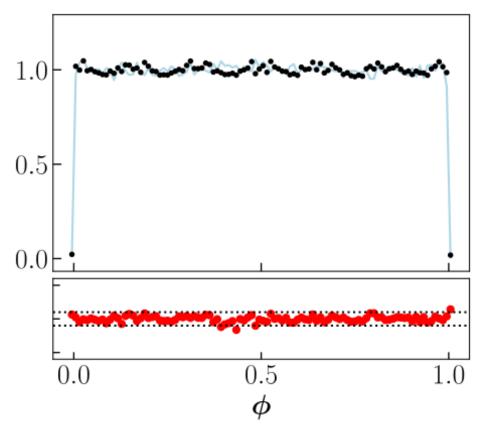


- Build a single generative model which will generate vertex level events according to each topology
- Pseudo-data distributed according to the correct "experimental" cross-sections inside the measured regions T_1 and T_2
- Pseudo-data according to a given model in the unmeasured region T₀
- The Al model should include $P_{\text{detection}} \neq 0$ or I (topologies are not orthogonal)
- Each event is defined by $(\theta, \phi, P_{T_0}, P_{T_1}, P_{T_2})$

- Synthetic data copy the GEN (vertex-level) distributions
- Different topologies are combined together
- Only Extrapolation in unmeasured regions is performed based on a model







Deploy an Al Generative Model to reproduce NP/HEP data

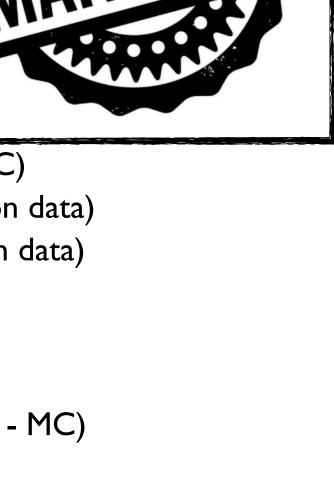
- Unfold detector effects
 - Smearing
 - Acceptance
- Produce physics observables
 - E . . .
 - Extract few dimensions cross-section (PDF) (e.g. inclusive electron scattering MC)
 - Extend the closure test to cross-sections in a mutiD phase-space (e.g. 2-pion photoproduction MC)

I. unfold acceptance

II. combine raw data

- Validate the analysis procedure extracting cross-section from data (e.g. high energy CLAS-gl I 2-pion data)
- Combine data of the same final state taken in different kinematics (e.g. low energy CLAS-gl I 2-pion data)
- Combine data from different final states (e.g. CLAS-g11 3-pion/ω data)
- Extract physics out of data
 - Extract cross-section and amplitudes in a 2-body reaction (e.g. ππ scattering MC)
 - Extract moments of angular distributions and fit with a model (e.g. 2-pion pthotoproduction model MC)
 - Extract amplitudes from a multi-particle exclusive channel (e.g. CLAS-gl I 2-pion data)
 - Extract amplitudes in multi- coupled-channel analysis (e.g. CLAS-g1 I 2-pion + 3-pion/ω data)
 - Connect NN features to different physics processes (e.g. baryon and meson resonances in CLAS-gl I 2-pion data)

• ...



We demonstrated (closure-test) that GANs:

III. model-dep only in unmeasured area

Use GANs to to minimize the model dependence

- extend as much as possible the measured phase space
 - combining vertex-level data from different experiments (after smearing unfolding)
 - combining measurements of different topologies measured by the same detector
- reproduce data within the detector acceptance
- use a physics model to generate pseudo-data (only) in unmeasured regions

Model-independent

Considering that:

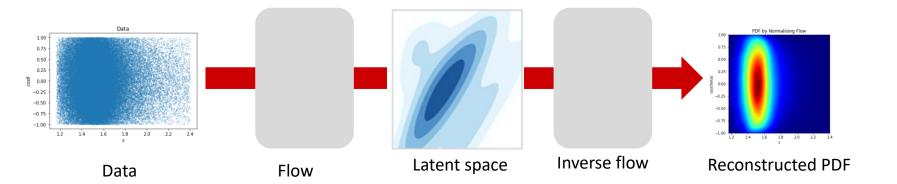
XSec = $\sum |A_i|^2$ $A_i = \sum$ (Scattering amplitude for each possible process)

- Impose conditions to the PDF via constraints on scattering amplitudes A_i (parity conservation, analiticity, unitarity, ...)
- A_i are difficult to constrain supervising on XSec
- work in progress

Goal: Train an Al model to extract amplitudes (complex numbers satisfying some physics constraints, e.g. unitarity) from events generated with Monte Carlo simulations according to a theoretical model (and eventually from experimental data)

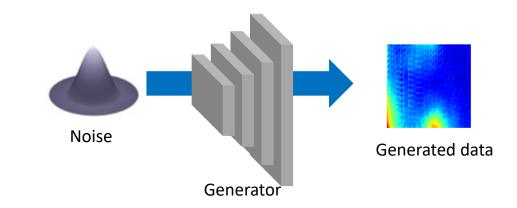
A. Normalizing Flows:

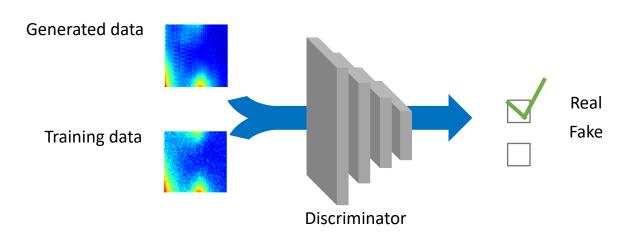
extract differential cross section (Probability Density) from events distribution



B. Generative Adversarial Networks (GANs):

extract amplitude from differential cross sections, using unitarity constraint





Credit: G.Montaña, A.Pillioni, N.Sato

B. Generative Adversarial Networks (GANs):

extract amplitude from differential cross sections, using unitarity constraint

Physics model: elastic scattering $\pi^+\pi^- \to \pi^+\pi^-$

$$A(s,\cos\theta) = \sum_{\ell=0}^{n} (2\ell+1) f_{\ell}(s) P_{\ell}(\cos\theta)$$

$$\int_{\ell=0}^{n} (s) = \frac{m_{\sigma} \Gamma_{\sigma}}{m_{\sigma}^{2} - s - i\Gamma_{\sigma} m_{\sigma}}$$

$$m_{\sigma} = (0.4 - 0.55) \text{ GeV} , \Gamma_{\sigma} = (0.4 - 0.7) \text{ GeV}$$

$$\int_{\ell=0}^{n} (s) e^{-\frac{m_{\sigma} \Gamma_{\sigma}}{m_{\sigma}^{2} - s - i\Gamma_{\sigma} m_{\sigma}}}$$

$$\int_{\ell=0}^{n} (s) e^{-\frac{m_{\sigma} \Gamma_{\sigma}}{m_{\sigma}^{2} - s - i\Gamma_{\sigma} m_{\sigma}}}$$

$$m_{\rho} = (0.775) \text{ GeV} , \Gamma_{\rho} = (0.147) \text{ GeV}$$

$$\int_{\ell=0}^{n} (s) e^{-\frac{m_{\sigma} \Gamma_{\sigma}}{m_{\sigma}^{2} - s - i\Gamma_{\sigma} m_{\sigma}}}$$

$$m_{\rho} = (0.775) \text{ GeV} , \Gamma_{\rho} = (0.147) \text{ GeV}$$

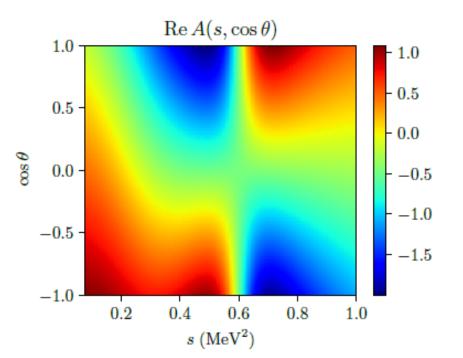
$$A(s,\cos\theta) = f_0(s) + 3f_1(s)$$

$$f_0(s) = \frac{m_{\sigma} \Gamma_{\sigma}}{m_{\sigma}^2 - s - i \Gamma_{\sigma} m_{\sigma}}$$

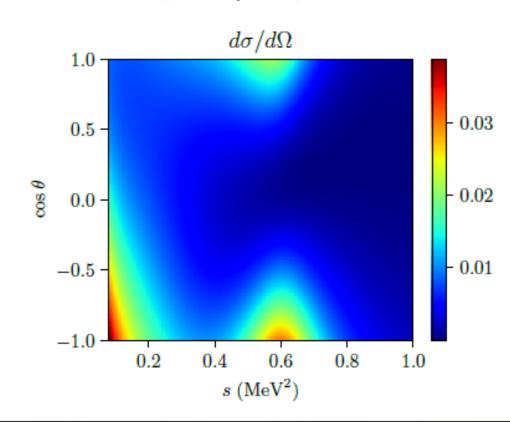
$$f_1(s) = \frac{m_{\rho} \Gamma_{\rho}}{m_{\sigma}^2 - s - i \Gamma_{\sigma} m_{\sigma}}$$

$$m_{\sigma} = (0.4 - 0.55) \text{ GeV}, \ \Gamma_{\sigma} = (0.4 - 0.7) \text{ GeV}$$

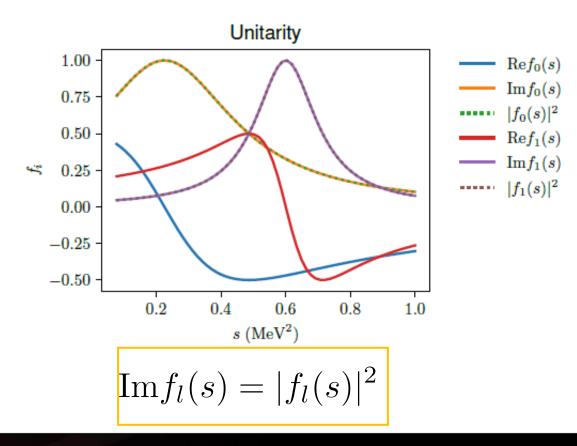
$$m_{\rho} = (0.775) \text{ GeV}, \ \Gamma_{\rho} = (0.147) \text{ GeV}$$

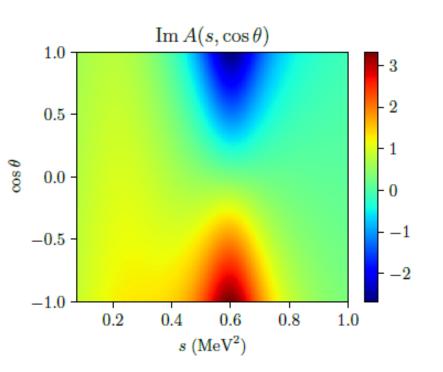


$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \frac{1}{s} |A(s,\theta)|^2$



Partial waves satisfy the unitarity condition:



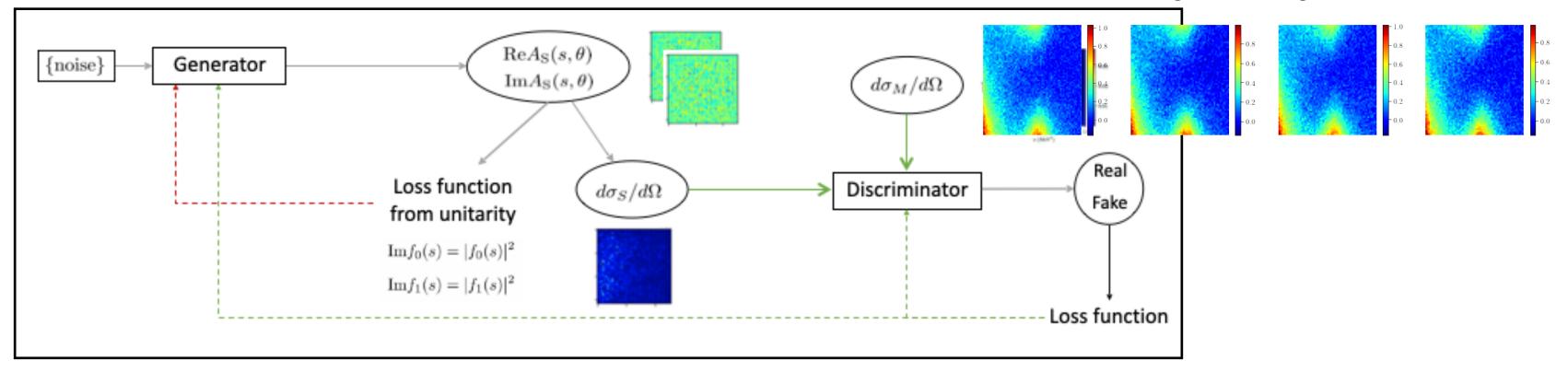


Credit: G.Montaña, A.Pillioni, N.Sato

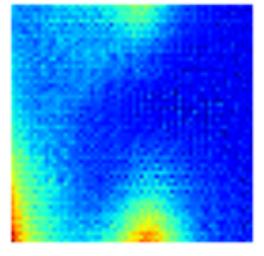
B. Generative Adversarial Networks (GANs):

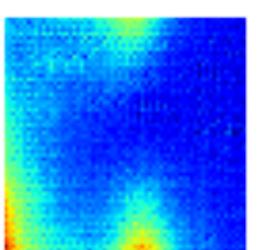
extract amplitude from differential cross sections, using unitarity constraint

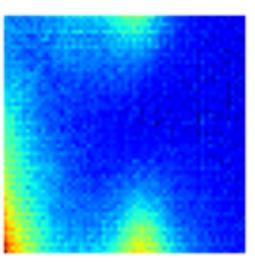
Training xsections generated form the model



Generated samples at the end of the training



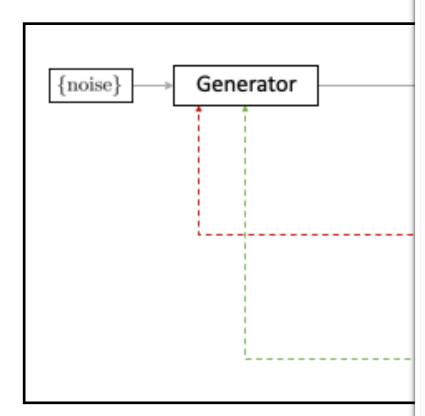




- GANs training in progress
- from preliminary results, GANs are converging

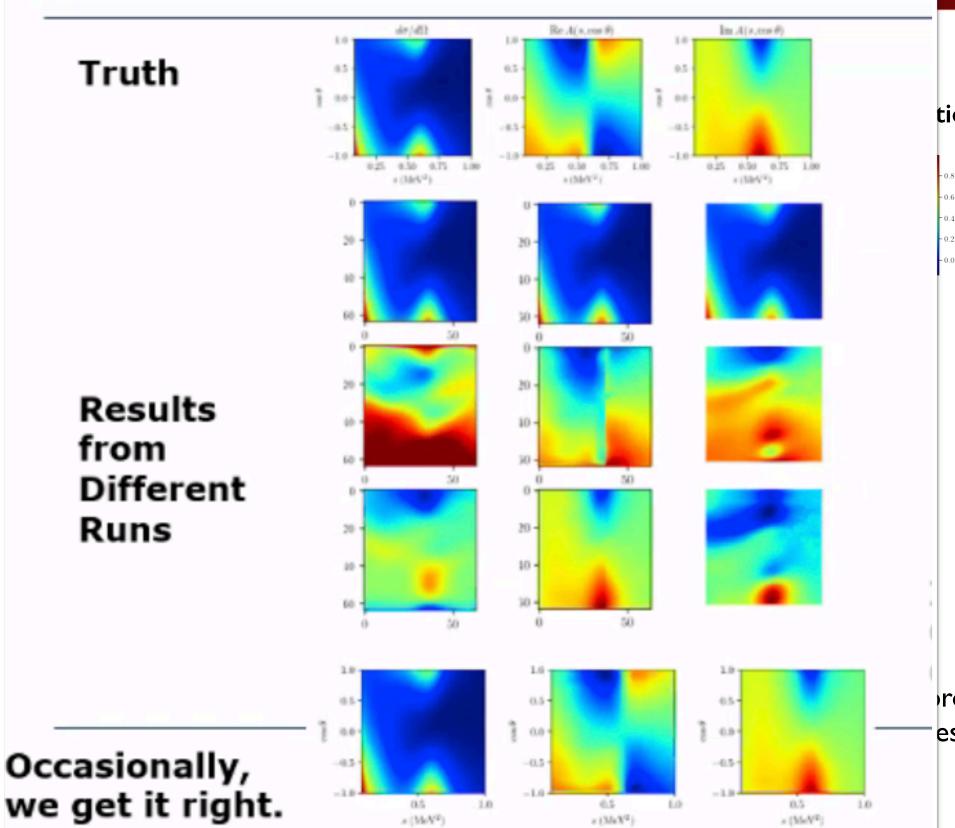
 $Credit: G. Monta\~na, A. Pillioni, \, N. Sato$

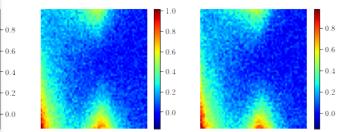
B. Generative Adversarial Netw extract amplitude from differential cr



Generated samples at the end of the training

Reconstruction of Amplitude from Cross Section





rogress esults, GANs are converging

Credit: G.Montaña, A.Pillioni, N.Sato

Summary

Intuition:

Al has the potential to surpass traditional analysis methods in nuclear and high-energy physics (NP/HEP), offering a unique and powerful approach to extracting physics insights from data

- Unfold detector's effects to extract physics observables at vertex-level
- Embed (multiD) xsec information (correlations) in a data-trained event generators
- Preserve data in an alternative compact and efficient form
- Provide an alternative way to extract PDFs and amplitudes
- Incorporate Universality (of scattering amplitudes) training a NN with different kinematics of the same final state or different final states (coupled channels)
- Extract NN features related to the underlying physics

Where are we?

- We performed a positive closure test on inclusive electron scattering and multiD reactions (2pion photo production)
- We demonstrate that GANs are a viable tool to unfold detector effects (smearing) to generate a synthetic copy of data
- We demonstrate that original correlations are preserved
- We demonstated that the best option to address detector acceptance limitations
- The first attempt to use a model-independent procedure supervising at level of amplitudes is encouraging

Still a long way to use Al to extract physics from data in an easier and more efficient way, but, step by step, we are demonstrating this intuition is correct!

