

Study of the Relative Mass and Width of the $Z^0 \rightarrow \mu^+ + \mu^-$ Decay, as a Function of Centrality, in Pb+Pb Collisions with CMS

11th APS GHP Workshop, March 16th 2025 Anaheim, California

CMS

Outline

• Introduction

• Physics Motivation

Analysis Methodology

- Kinematic Cuts
- Techniques
- Quarkonia Check

• Systematic Checks

Frank Gonzalez (UC Davis)

• Summary

Can we Study Electromagnetic Fields in HIC via Z⁰-Bosons?

Theory: after collision, electric charges from relativistic nuclei could lead to *gargantuan* EM field.

- ➤ B-field: *strongest* in nature.
 - Magnitude: [PLB 816 (2021) 136271, PLB 827 (2022) 136962]

 $|eB| \sim (15-73) \; m_\pi^2 \sim 10^{15} \; {
m T}$

- Depends on collision energy.
- Time dependent, rapidly decaying (c $\mathbf{r} \sim 0.05 0.4$ fm).
- Can affect particles that go through it.
- > Magnitude and time-evolution is not well constrained.

Motivation for the study: search for evidence of these EM fields.

Tiffany Bowman & Jen Abramowitz, Brookhaven National Laboratory

Frank Gonzalez (UC Davis)

Probing the EM Field via Leptonic Decay of the Z⁰

Prediction: large EM field can leave imprints in charged leptons from Z⁰ decay. [PLB 827 (2022) 136962]

- > **Potential avenue of study:** modification of invariant mass of Z⁰.
 - EM field produces Lorentz force on decaying leptons, modifying their momenta.
 - Shift in mass + increase in width.
 - <u>Predicted shift on the order of ~400 MeV</u>, for strongest field.
- Strength of modification is dependent on centrality.
 - Maximal for semi-central collisions.

Frank Gonzalez (UC Davis)

Time Scale of EM Field and Z⁰-Boson Decay

Frank Gonzalez (UC Davis)

Observations in Muon Performance Paper [JINST 19 (2024) P09012]

> Studies of mass resolution and scale of Z^0 performed across p+p, p+Pb and Pb+Pb data/MC.

> Observed possible effect.

Frank Gonzalez (UC Davis)

Analysis Goal: Characterizing Z⁰ Mass and Width

- Constrain magnitude of the EM field in HI collisions using Pb+Pb and p+p data.
- > Key question: Is there a difference in the inv. mass distribution of the Z^0 in Pb+Pb compared to p+p?
 - Three methods to characterize the inv. mass distribution: Each method relies on different assumptions.
 - Window counting: calculate mean and std. dev from mass spectrum histogram.
 - Fit PDF: fit mass distribution with signal + bkgd PDF.
 - Template fit (not included here): generate MC template, re-weight to obtain large family of curves, compare each to data for goodness-of-fit.
- ➤ Key idea:
 - Each technique is implemented in the *same* manner for both Pb+Pb and p+p data.
 - Calibrations, resolution and natural width appear in both data sets; EM effect appears *only* in Pb+Pb.
 - Calculate the differences PbPb pp: $\Delta M = M_{
 m PbPb} M_{
 m pp}$ $\Delta \sigma = \sigma_{
 m PbPb} \sigma_{
 m pp}$
- > Advantage: focusing on differences in Pb+Pb to p+p results in large cancellation of systematics.

Methodologies

Cut Selections

- Analysis uses p+p (13 TeV) and Pb+Pb (5.02 TeV)
 L = 1.8 nb⁻¹, 2018 data.
- > Muon selections to gather Z^0 -boson:
 - |**η**| < 2.4, p_T > 20 GeV.
 - Opposite-charge pairs.
 - $60 < m_{\mu\mu} < 120 \text{ GeV}.$
- Centrality: 0-10%, 10-20%, 20-30%, 30-100%, 0-100%.

"Window Counting" Method

Window counting: simplest method.

- > Characterize Z^0 inv. mass using mean and std. dev.
 - Approach taken by theory paper. [PLB 827 (2022) 136962]
- > Define "window range" for calculation of mean and std. dev.
 - Breit-Wigner has long tails, its std. dev. is ill-defined.
 - Calculation is well-defined when using a window.
 - Result depends on window size.

"Window Counting" Method

- Example of window-size dependence.
 - Mean and std. dev. depend on window size
- Studied as part of the systematic uncertainties.

Fit approach: characterize distribution by fitting inv. mass spectra w/ a signal and bkgd PDF (F = S + B).

Signal description:

- \succ Z⁰ distribution described by underlying BW.
- Resolution/Radiation effects modeled by Double-Sided Crystal Ball (DSCB) shape.
- ➤ Signal PDF: BW convolved with DSCB.

Fit approach: characterize distribution by fitting inv. mass spectra w/ a signal and bkgd PDF (F = S + B).

Signal description:

- \succ Z⁰ distribution described by underlying BW.
- Resolution/Radiation effects modeled by Double-Sided Crystal Ball (DSCB) shape.
- ➤ Signal PDF: BW convolved with DSCB.
 - Two signal parameters describe width: Γ (BW) and σ (DSCB).
 - Fixed Γ parameter from p+p data binned in rapidity.
- ➤ Bkgd PDF: single exponential.

Frank Gonzalez (UC Davis)

- Example fit for Pb+Pb data.
 - Unbinned log-likelihood fit.
 - Background level is small.
- The only free parameters are:
 - Signal fraction.
 - Pole mass (m₀).
 - Std. dev. of Gaussian core (σ_{fit}).

Methodologies: An Overview

Window: mass and width estimated directly from mean and std. dev of inv. mass. Most general way to quantify broadening with as few assumptions as possible.

Fit: from fit; mass is m₀ is BW mean, width characterized by Gaussian-core of DSCB.

NOTE: This is a statistics dominated analysis. All systematic uncertainties small compared to statistical uncertainties.

Frank Gonzalez (UC Davis)

Quarkonia Stability Check

Time Scale Comparison: Quarkonia vs Z⁰-Boson

Frank Gonzalez (UC Davis)

Pb+Pb J/ ψ Stability per Run-Period/Centrality [p_T > 3.5 GeV]

- 2018 Pb+Pb data used to study stability in quarkonia.
 - Dimuon candidates: $2 < m_{\mu\mu} < 4 \text{ GeV} (J/\psi)$.
- Stability of mean and width as a function of time constant; no centrality dependence.
 - Calibration does not depend on multiplicity, neither does resolution.

• Estimate on how large a shift in mean/width can be accounted for by resolution.

Pb+Pb J/ ψ Stability per Run-Period/Centrality [$p_T > 5$ GeV]

- ► J/ ψ with $p_T > 5$ GeV presents same trend as lower p_T : stability, no centrality dependence.
- ➤ CMS resolution scales linearly w/ p_T up to 100 GeV.
 ➤ J/ψ width error ~3 MeV, can accommodate error of ~15 MeV for muons from Z⁰ decay.
- > This shift is *smaller than* the EM-field effect we seek.

Frank Gonzalez (UC Davis)

Systematics

Window Counting Method: Pseudo-Experiments

- Window counting: main systematic arises from window width.
 - Narrow: [82.5, 97.5] GeV.
 - Nominal: [80, 100] GeV.
 - Wider: [77.5, 102.5] GeV.

Procedure:

 Estimate systematic change in mean and std. dev. using pseudo-experiments.

APS, Group on Hadronic Physics, 11th Workshop

Window Counting Method: Window Size

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

Likelihood Fit: Exploring Alternative PDFs

- Considered different choices for signal and bkgd PDFs for model.
 - Nominal: DSCB.
 - ADSCB: fixed tail parameters.
 - Single CB: one width parameter.
 - Nominal signal + 1st-order Chebyshev.
 - All signal variations convolved with BW.

Values (Top):

- The systematic uncertainty is as large (or larger) than the statistical uncertainty.
- Differences (Bottom):
 - Uncertainties correlated: largely cancel in Pb+Pb – p+p.
- Variations in signal & bkgd PDFs smaller than stat. uncertainties.

Frank Gonzalez (UC Davis)

Results

Current Analysis Status: Mass and Width Values ($|\eta| < 2.4$)

- > We report two observables: mass and width *values*, and *difference* in Pb+Pb and p+p.
 - Each method results in quantitatively different value of mass/width to characterize inv. mass distribution.
 - We don't expect results from all methods to have same values.

Current Analysis Status: Mass and Width Differences ($|\eta| < 2.4$)

- > Once each mass/width value from each method is compared to corresponding p+p, a consistent picture emerges.
 - Data in full acceptance rule out large shifts (> 400 MeV) mass/width.
 - All methods agree on mass shift toward low masses, ~100 MeV for int. cent.
 - Remaining item: Take into account p_T difference between Pb+Pb and p+p. Stay tuned!

Summary

AM (GeV)

We presented a study comparing inv. mass and width of Z⁰ in p+p and Pb+Pb.

- > Quantified changes in mass/width of Z^0 via two methods.
 - WC: obtain mean and std. dev. of inv. mass.
 - Likelihood Fit: fit inv. mass with signal/bkgd PDF, account for detector resolution, natural width.
- > By taking the *difference*, systematics largely cancel.
- > Regardless of method, we see a *consistent trend*.
 - All methods *agree* on whether shift is positive/negative.
 - This is the current status of the analysis.
 - To do: address p_T dependence in p+p spectrum to match Pb+Pb.
- > Results help place constraints on magnitude and evolution of EM field in HI.

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

Thank you all so much for your attention! 🙂

CMS Experiment at the LHC, CERN Data recorded: 2015-Dec-07 05:42:40.670976 GMT Run / Event / LS: 263410 / 4195409 / 106

Backup Content

Extra Material

Magnetic Field Time-Evolution

- > B-field decays with time; power-law parameter (a) controls rate of decay. $B(\tau) = eB_0/\left(1 + \left(\frac{\tau}{\tau_B}\right)^a\right)$
- Expect E-field along x-direction (in-plane), Faraday's law.
- Study varied magnitude, lifetime & power-law to find pattern of strength and time-dependence of EM field.
 - Magnitude: Z⁰-boson change in mean/width in mid-rapidity, for fixed lifetime/power-law
 - Lifetime: dependence extended from 0.05 0.4 fm/c.
 - Power-Law: varied by factor of 3 in B-field parametrization; corresponds to large change in time-dependence.

Monte Carlo Smearing: Implementing a Mass Window

Pb+Pb Υ (1S) Stability per Run-Period/Centrality [p_T > 4 GeV]

- \succ Conclusion holds for Υ as well, but larger error bars.
 - Dimuon candidates: $6 < m_{\mu} < 14 \text{ GeV} (\Upsilon)$.
 - We do not see anything that would mimic effect we seek.
 - Constrain placed by J/ψ w/ $p_T > 5$ GeV muons.
- Fit inv. mass with DCB, fixing tail parameters from MC, for all acceptance regions.

Muon Reconstruction Check

Muon Reconstruction Performance: N_{tracks} to Centrality

Frank Gonzalez (UC Davis)

Muon Reconstruction Performance: Difference = Pb+Pb – p+p

- Scaled mass resolution/scale to PDG scale.
- Translated muon performance paper centrality bins to ours.
- Muon study convolved BW with CB.
- Analysis convolved with DSCB.
- Both fix BW Gamma width.
- ➤ Values (Top), Differences (Bottom):
 - Vals/Diff consistent with analysis.

Frank Gonzalez (UC Davis)

R_{AA} Distribution for the Z⁰-Boson (CMS)

> R_{AA} distribution of the Z⁰-boson, as a function of p_T , |y| and N_{part} , for the dimuon and dielectron channels.

- Study shows that R_{AA} displays no dependence on p_T, y and centrality for both muons and electrons.
- R_{AA} ~ 1: no variation in nuclear effects. Thus, distribution of Z-bosons is flat in p+p and Pb+Pb, as a function of kinematic variables.

R_{AA} Distribution for the Z⁰-Boson (ATLAS)

> Measurements from ALICE place production yield of Z^0 in Pb+Pb with $R_{AA} \sim 1$, across all centrality intervals.

- LHS: Normalized Z yield as a function of rapidity, for 3 cent intervals. Results consistent within their statistical uncertainties.
- RHS: Data consistent with $R_{AA} \sim 1$, and with isospin effect only.

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

March 16th, 2025

Window Counting w/ Bkgd Subtraction

Window Counting: Background Subtracted Inv. Masses (|n| < 2.4)

Pb+Pb \sqrt{s} = 5.02 TeV, L = 1.8 fb⁻¹

Pb+Pb \sqrt{s} = 5.02 TeV, L = 1.8 fb⁻¹

CMS

Nominal Window

Frank Gonzalez (UC Davis)

Pb+Pb \sqrt{s} = 5.02 TeV, L = 1.8 fb⁻¹

APS, Group on Hadronic Physics, 11th Workshop

Window Counting: Background Subtracted Inv. Masses (|n| < 1.0)

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

March 16th, 2025

120

p+p Fits Binned in Rapidity (|y|)

- Narrowed down parameter space by fixing ~constant parameters.
- > Expectation: resolution depends on rapidity.
 - Width σ captures this behavior.
 - Γ stays constant near PDG value.
 - Enabled to fix BW Γ parameter, and use a single width σ .

p+p Fits in Rapidity

Frank Gonzalez (UC Davis)

p+p Fits in Rapidity

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

p+p Fits in Rapidity

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

Quarkonia Fits (Run Number)

J/ψ Fits (p_T > 3.5 GeV) : Run Number ($|\eta|$ < 2.4)

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

J/ψ Fits (p_T > 3.5 GeV) : Run Number ($|\eta|$ < 2.4)

J/ψ Fits (p_T > 3.5 GeV) : Run Number ($|\eta| < 1.0$)

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

J/ψ Fits (p_T > 3.5 GeV) : Run Number ($|\eta| < 1.0$)

March 16th, 2025

J/ψ Fits (p_T > 5 GeV) : Run Number ($|\eta|$ < 2.4)

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

J/ψ Fits (p_T > 5 GeV) : Run Number ($|\eta|$ < 2.4)

March 16th, 2025

J/ψ Fits (p_T > 5 GeV) : Run Number ($|\eta|$ < 1.0)

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

J/ψ Fits (p_T > 5 GeV) : Run Number ($|\eta|$ < 1.0)

Frank Gonzalez (UC Davis)

Υ (1S) Fits (p_T > 4 GeV) : Run Number ($|\eta|$ < 2.4)

Frank Gonzalez (UC Davis)

Υ (1S) Fits (p_T > 4 GeV) : Run Number ($|\eta|$ < 1.0)

Frank Gonzalez (UC Davis)

Quarkonia Fits (Centrality)

J/ψ Fits (p_T > 3.5 GeV) : Centrality ($|\eta| < 2.4$)

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

J/ψ Fits (p_T > 3.5 GeV) : Centrality ($|\eta| < 1.0$)

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

J/ψ Fits ($p_{\tau} > 5$ GeV) : Centrality ($|\eta| < 2.4$)

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

J/ψ Fits (p_T > 5 GeV) : Centrality ($|\eta| < 1.0$)

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

Υ (1S) Fits (p_T > 4 GeV) : Centrality ($|\eta|$ < 2.4)

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop

Υ (1S) Fits (p_T > 4 GeV) : Centrality ($|\eta|$ < 1.0)

Frank Gonzalez (UC Davis)

APS, Group on Hadronic Physics, 11th Workshop