

APS GHP 2025 Workshop

11th Workshop of the APS Topical Group on Hadronic Physics

Progress on the simultaneous analysis of collinear and transverse momentum parton distributions

Patrick Barry¹, Leonard Gamberg², Wally Melnitchouk³, Eric Moffat¹, Daniel Pitonyak⁴, Alexei Prokudin^{2,3}, Jianwei Qiu^{3,5}, Nobuo Sato³, Alexey Vladimirov⁶, Richard Whitehill⁷

¹Argonne National Laboratory, ²Penn State University – Berks, ³Jefferson Lab, ⁴Lebanon Valley College, ⁵College of William and Mary, ⁶Universidad Complutense de Madrid, ⁷Old Dominion University

The 11th Workshop of the APS Topical Group on Hadronic Physics

March 14-16, 2025

barry@anl.gov

Motivation

 We want to study the structure of hadrons in terms of quarks and gluons through QCD

- However, quarks and gluons are not directly observable, and structures are unknown!
- We look to experimental observables to describe the structures in terms of universal objects

Collinear structure – parton distribution function (PDF)

- Describes the collinear momentum distributions of quarks and gluons
- Partons have momentum along the direction of the hadron
- Evolution is descriped through DGLAP

$$\frac{\partial f(x,\mu^2;\boldsymbol{\theta})}{\partial \log \mu^2} = \int_x^1 dz \ \mathcal{P}\left(\frac{x}{z},\alpha_S(\mu^2)\right) f(z,\mu^2;\boldsymbol{\theta})$$

Transverse Momentum Dependent distributions (TMDs)

barrv@anl.gov

- Encode both the collinear and transverse momentum carried by partons
- TMDs are related to collinear PDFs via Operator Product Expansion
- Both TMDs and PDFs can be extracted from variety of experimentally measured processes where factorization is applicable, such as Drell-Yan (DY)

$$\widetilde{f}(x, b_T; \mu, \zeta) = [C \otimes \mathbf{f}](x, b_T; \mu_0, \zeta_0)$$

 $\times e^{S_{\text{evo}}(b_T;\mu,\mu_0,\zeta,\zeta_0)} f_{\text{NP}}(x,b_T)$

Collins, Soper, Sterman Nucl. Phys. B **250**, 199, (1985). Collins, Cambridge University Press, (2011).

Unpolarized TMD PDF

$$\tilde{f}_{q/\mathcal{N}}(x,b_T) = \int \frac{\mathrm{d}b^-}{4\pi} e^{-ixP^+b^-} \mathrm{Tr} \left[\langle \mathcal{N} | \bar{\psi}_q(b) \gamma^+ \mathcal{W}(b,0) \psi_q(0) | \mathcal{N} \rangle \right]$$
$$b \equiv (b^-, 0^+, \boldsymbol{b}_T)$$

- b_T is the Fourier conjugate to the intrinsic transverse momentum of quarks in the hadron, k_T
- Small b_T : TMD can be described through the operator product expansion in terms of collinear PDFs
- Large b_T : TMD has nonperturbative effects that must be determined from phenomenological analyses

How sensitive are TMD observables to PDFs?

- Red: Bootstrapped fit with central PDFs
- Green: Unbootstrapped fit, varying the PDF replicas
- Blue: Weighted average
- One needs to take a holistic approach and analyze both PDFs and TMDs simultaneously

Can we learn about PDFs from TMD data?

- Viewing the uncertainties of the observables coming from the PDFs, there is potentially room for improvement on precision of PDFs
- How about for the pion?
- We extracted simultaneously the pion PDFs and TMDs

• We found little change in the PDFs before and after the q_T -dependent DY data

Prospects of high-energy data for protons

- There are two major reasons to have hope for improvement of PDFs in the proton sector
- 1. LHC data are much more precise than their fixed-target lowenergy counterparts
 - Peaks of the cross-section in the Z-boson region gather high statistics
- 2. High-energy data shifts the peak of the b_T -spectrum into the small b_T region, where the operator product expansion and perturbative evolution dominates
- Have to perform the **simultaneous** extraction of PDFs and TMDs from high-energy data to find out!

Transverse momentum dependent DY

- Full cross section over all q_T $\frac{d\sigma}{dQ^2 dy dq_T^2} = W(q_T, Q) + Y(q_T, Q) + O((m/Q)^c),$
- At small q_T , $W(q_T, Q)$ should be the dominant term

$$W(\boldsymbol{q}_T, Q) = \int rac{d^2 \boldsymbol{b}_T}{(2\pi)^2} \, e^{i \boldsymbol{q}_T \cdot \boldsymbol{b}_T} \, \widetilde{W}(\boldsymbol{b}_T, Q) \, .$$

Input scale TMD

$$\tilde{f}_{q/\mathcal{N}}(x,b_T;\mu_0,\zeta_0) = f_{q/\mathcal{N}}^{\mathrm{NP}}(x,b_T) \sum_j \int_x^1 \frac{d\xi}{\xi} \tilde{\mathcal{C}}_{q/j}(x/\xi,b_T;\mu_0,\zeta_0) f_{j/\mathcal{N}}(\xi;\mu_0)$$

- $f^{\rm NP}$ describes the non-perturbative structure of the TMD at large b_T
- Convolution is the operator-product expansion (OPE), which describes the small- b_T behavior
- Explicit dependence on the collinear PDF $f_{j/\mathcal{N}}$
- \tilde{C} is perturbatively expanded in α_S
- Evolution in μ and ζ needs to take place to match with data

Building the TMD in the ζ -prescription

- We need to evolve the TMD $\tilde{f}(x, b_T; \mu_0, \zeta_0) \rightarrow \tilde{f}(x, b_T; \mu_f, \zeta_f)$
- A few choices:
 - 1. Evolve $\zeta_0 \rightarrow \zeta_f$ at a fixed μ_i , then evolve $\mu_0 \rightarrow \mu_f$ at a fixed ζ_f
 - 2. Evolve $\mu_0 \rightarrow \mu_f$ at a fixed ζ_i , then evolve $\zeta_0 \rightarrow \zeta_f$ at a fixed μ_f
 - 3. Evaluate the TMD along the **nullevolution line**, where $\tilde{f}(x, b_T; \mu_0, \zeta_0) = \tilde{f}(x, b_T; \mu_f, \zeta_\mu)$, then evolve $\zeta_\mu \to \zeta_f$ at a fixed μ_f

Scimemi and Vladimirov, EPJ C 78, 89 (2019).

$$\left(\mu^2 \frac{\partial}{\partial \mu^2} + \left(\frac{\mu^2}{\zeta} \frac{d\zeta}{d\mu^2}\right) \zeta \frac{\partial}{\partial \zeta}\right) F(x, \boldsymbol{b}; \mu, \zeta) = 0.$$

TMD Evolution

- Since we evolve on the null-evolution line, no explicit evolution in μ has to be added, and we evolve in ζ according to

$$\tilde{f}_{q/\mathcal{N}}(x,b_T;\mu,\zeta=Q^2) = \left(\frac{Q^2}{\zeta_{\mu}(b_T)}\right)^{-\mathcal{D}(b_T,\mu)} \tilde{f}_{q/\mathcal{N}}(x,b_T;\mu_0,\zeta_0)$$

- ${\mathcal D}$ is the CS kernel, which has the following components

$$\mathcal{D}(b_T, \mu) = \mathcal{D}^{\text{pert}}(b_*, \mu_{b_*}) + \int_{\mu_{b_*}}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}(\mu') + \mathcal{D}^{\text{NP}}(b_T)$$

Described perturbatively
Non-perturbative
description (large- b_T)

Implementing the ζ -prescription in JAM code

 We have spent time with the ART folks checking our JAM code against the arTeMiDe

• Special attention paid to electroweak corrections and fiducial cuts

Datasets and kinematics

- Fixed-target low-energy datasets: more sensitivity to nonperturbative TMD structures
- Collider high-energy datasets: more sensitive to perturbative information while complementing the non-perturbative evolution

Fit results

- Using NLO+N2LL accuracy, we performed fits with the central replica for the MSHT20 PDFS (Bailey, et al., EPJ C 81, 341
 (2021).) and a JAM replica (Anderson, Melnitchouk, and Sato, 2501.00665 [hep-ph])
- We see that there can be improvement in the fit by improving the PDF set!

$\mathbf{TMD}-\mathbf{Drell} ext{-}\mathbf{Yan},Z ext{-}\mathbf{boson}$				
Process	Experiment	$N_{ m pts}$	$\chi^2/N_{ m pts}$ (MSHT20) χ^2	$/N_{ m pts}~({ m JAM})$
Fixed target DY	E288, E605, E772	224	1.46	1.60
TeVatron	CDF, D0	80	0.69	1.21
RHIC	Star, PHENIX	12	2.40	1.84
LHC	ATLAS 8 TeV	30	1.75	4.03
	CMS 13 TeV	64	0.75	0.76
	LHCb 7, 8, 13 TeV	26	0.50	1.05
Total		436	1.20	1.54

Agreement with the collider data

• Here, using the JAM PDFs

Uncertainties of JAM PDFs

- Here, we fix the nonperturbative function from the fit to a central JAM replica
- Without fitting, we vary the JAM PDFs and recompute the predictions for ATLAS
- Improvements needed on the PDFs and the overall procedure to extract TMDs and PDFs

Conclusions and next steps

<u>Summary</u>

- We have demonstrated agreement in our codes with one of the leading phenomenological analysis groups
- We have performed preliminary fits to the low-energy and high-energy q_T -dependent Drell-Yan data

Next Steps

- 1. Perform fits of the TMDs over all JAM replicas
- 2. Incorporate the world collinear data and **open** the JAM PDFs in a simultaneous analysis
- 3. Understand the PDF dependence on various ingredients to the framework

Backup Slides

What do we know about structures?

 Most well-known structure is through longitudinal structure of hadrons, particularly protons

Anderson, Melnitchouk, and Sato, 2501.00665 [hep-ph]

barry@anl.gov

Non-perturbative models for TMDs

• Fit λ_1 and λ_2 to this functional form for each of the following flavors: $u, d, \overline{u}, \overline{d}$, and $sea = s = \overline{s} = c = \overline{c} = b = \overline{b}$

$$f_{NP}^{f}(x,b) = \frac{1}{\cosh\left(\left(\lambda_{1}^{f}(1-x) + \lambda_{2}^{f}x\right)b\right)},$$

• For the CS kernel, we fit two additional parameters, c_0 and c_1 according to this functional form

$$\mathcal{D}_{\mathrm{NP}}(b) = bb^* \left[c_0 + c_1 \ln \left(rac{b^*}{B_{\mathrm{NP}}}
ight)
ight],$$

Example of TMDs

