# Overview of ALERT Al-assisted Track Reconstruction and Particle Identification Project

The 11<sup>th</sup> workshop of the APS Topical Group on Hadronic Physics

3/15/25

Mathieu Ouillon (Mississippi State University)



### Outline

| 1. | ALERT Physics Program          |
|----|--------------------------------|
| 2. | Previous JLab Experiments      |
| 3. | ALERT Experimental setup       |
| 4. | Track Reconstruction           |
| 5. | Hits Clustering                |
| 6. | Al-assisted Model              |
| 7. | Al-assisted Model Evaluation   |
| 8. | Conventional and AI comparison |
| 9. | Summary and outlook            |

### ALERT Physics Program

Comprehensive studies QCD in nuclei and associated medium modifications



Explore the partonic structure of <sup>4</sup>He with Generalized Parton Distributions Test the Final State Interactions and rescaling model

Α

Explore the 3-D structure of modified nucleons in light ions  ${}^{2}H,{}^{3}H$ , and  ${}^{3}He$  ( ${}^{1}H$  or neutron)



**P**<sub>A-1</sub>



3/15/25 Mathieu Ouillon

### ALERT Physics Program

### Comprehensive studies QCD in nuclei and associated medium modifications



Extract quark and gluon GPDs in a dense nucleus; in this case, GPD H is obtained for both quarks and gluons in <sup>4</sup>He

Measure the  $F_2$  structure function of a weakly bound nucleon in <sup>4</sup>He and compare it to the <sup>2</sup>H case. Control FSIs with tagged fragments Extract quarks GPDs for bound nucleons and thus understand the effect of FSIs

3/15/25

#### Mathieu Ouillon

### In-medium Structure and Effects

- Modifications of bound nucleons properties and dynamics:
  - EMC effects at moderate Bjorken x, and shadowing at small x
  - Significant even for <sup>4</sup>He
  - Many models for the EMC effect
- The EMC effect remains a mystery
  - What is the origin of the EMC effect?
  - How is the nucleon modified in nuclear medium?
- Nuclear modifications of DIS cross sections were probed by CERN, SLAC, and JLab experiments.
- Clear explanations may arise from studying the nuclear modifications via other reactions, such as Deeply Virtual Compton Scattering and Deeply Virtual Meson Production...
- What is the partonic structure of nuclei?



3/15/25

### Tagged DIS and the EMC effect

- Tagging  $\Rightarrow$  better understanding of the nuclear effects.
- Tagging implies measuring the characteristics of the spectator part
- Measurement with tagging ⇒ nuclear configuration selection via spectator kinematics:
  - On-shell extrapolation  $\Rightarrow$  access to free nucleon structure
  - Control initial state interactions
  - Control and constrain final state interactions
- Study the EMC effect for backward and forward configuration to distinguish between models
- Compare conventional models and alternative models:
  - Conventional: nuclear binding and Fermi motion
  - Alternative: modifications in quark confinement size or nucleon swelling





## Spectator-Tagged DVCS

- DVCS links the EMC effect and Short-Range Correlations (inelastic and quasi-elastic):
  - DVCS is used to study Generalized Partons Distributions
  - Forward limit: GPDs reduce to longitudinal parton distributions ⇒ may explain the EMC effect
  - Off-forward limit: GPDs reduce to form factors ⇒ describe quasi-elastic scattering off the nucleon
- DVCS allows a partonic level interpretation and in-medium nucleon tomography
- Tagged DVCS provides a way to quantify and control the nuclear effects
- Identify struck nucleon via tagging ⇒ separate mean field nucleons (low momentum) from SRC (high momentum) nucleons



### Previous Experiments at Jefferson Lab

- Two previous 6 GeV CLAS experiments: EG6 and BONuS
- Both use Radial Time Projection Chamber to detect the recoil fragment
- Main limitations:
  - EG6: had long drift time and lacked full Particle IDentification capabilities (identified only <sup>4</sup>He)
  - BONuS: had long drift time and only detect recoil proton





#### 3/15/25

Mathieu Ouillon

### ALERT Experiment Setup

• The ALERT experiment will take place in Hall B at Jefferson Lab

The 1

- CLAS12: detect scattered electrons and forward scattered hadrons
- ALERT: detect recoil spectators or coherently scattered nucleus
- ALERT Goals:

3/15/25

- Aim to identify light ions: p, <sup>2</sup>H, <sup>3</sup>H, <sup>3</sup>He, and <sup>4</sup>He
- Detect the lowest momentum possible, down to 70 MeV/c for proton

Mathieu Ouillon

• Handle high CLAS12 rates and luminosities (10<sup>35</sup> cm<sup>2</sup>s<sup>-1</sup>)



### ALERT Experiment Setup

• ALERT have two sub-detectors: A Hyperbolic Drift Chamber (AHDC) and A Time of Flight (ATOF)

#### ATOF

- Time of flight: used for Particle IDentification
- Small barrel of segmented scintillators
- The TOF measurement is degenerate for <sup>2</sup>H and <sup>4</sup>He, but dE/dx can distinguish the two nuclei bands





#### AHDC

- Aluminum wire: 2 mm apart
- 20-degree stereo angle (hyperbolic shape)
- 5 superlayers, each composed of 2 layers
- 576 signal wires (6 ground wires of each signal)

3/15/25 Mathieu Ouillon

### Track Reconstruction

- Aim to reconstruct the momentum and trajectory of (charged) particles
- Two stages of track reconstruction:
  - Track finding: Identifying which hits came from the same charged particle
  - Track fitting: Fitting hits to a single track to extract track parameters (momentum and position)



### Track Finding

- Track finding is a clustering problem:
  - Set of points (hits)  $\Rightarrow$  cluster in sets (tracks) originating from the same particle
  - Hits: particles deposit energy when interacting with the detector material
  - Tracks: reconstructed sequences of hits representing charged particle trajectories
- Different algorithms:
  - Distance between hits + fit
  - Hough transform
  - Combinatorial Kalman Filter
  - Artificial Intelligence models (MLP, GNN...)



The 11<sup>th</sup> workshop of the APS Topical Group on Hadronic Physics

12

Mathieu Ouillon

### Clustering and Track Candidates

- First step, find all track candidates:
  - Clustering ⇒ merging hits close in the x-y plane to reduce the combinatorial background
  - Merge hits on the same layer that are one wire apart into precluster
  - Merge precluster in the same superlayer that are less than 8mm apart into superprecluster
  - Generate all track candidates with 5 super-preclusters (one on each superlayer)
- Generate around 40/100k track candidates per event with super-precluster/raw hits



The 11<sup>th</sup> workshop of the APS Topical Group on Hadronic Physics

13

## Al-assisted Model and Training

- Model: MultiLayer Perceptron, 10 inputs, 1/3/5 hidden layer (20/100 neurons), 1 output
- Inputs: *x* and *y* position of the five super-preclusters
- Good and bad tracks for the training:
  - Good tracks: GEANT4 simulation (proton with  $p \in [70, 250]$  MeV/c,  $\varphi \in [0, 360]^\circ$ ,  $\theta \in [60, 120]^\circ$  and Vz  $\in [-15, 15]$  cm)
  - False tracks: Interchanging randomly up to two super-preclusters with another event



3/15/25

Mathieu Ouillon

## Efficiency and Purity vs. Threshold

- Threshold: if output above/lower than the threshold  $\Rightarrow$  good/bad tracks
- To evaluate the model:
  - Efficiency: Number of good tracks classified as good normalized by number of events.
  - Purity: Number of good tracks classified as good normalized by number of tracks (good or bad) classified as good.
- Events need to have at least one track candidate.
- Set the threshold to 0.2 to have a higher efficiency
- Blue: model with 20 neurons in 3 hidden layers
- Orange: model with 100 neurons in 3 hidden layers
- Green: model with 20 neurons in 5 hidden layers
- Red: model with 20 neurons in 1 hidden layer



3/15/25

Mathieu Ouillon

## Efficiency and Purity vs. Current

• Efficiency is always higher than 90% and the purity is between 55% and 95%



- Blue: model with 20 neurons in 3 hidden layers
- Orange: model with 100 neurons in 3 hidden layers
- Green: model with 20 neurons in 5 hidden layers
- Red: model with 20 neurons in 1 hidden layer

### Efficiency and Purity vs. Momentum

- Background is generated with current I = 487.5 nA
- Constant efficiency and purity across the momentum range

- Blue: model with 20 neurons in 3 hidden layers
- Orange: model with 100 neurons in 3 hidden layers
- Green: model with 20 neurons in 5 hidden layers
- Red: model with 20 neurons in 1 hidden layer



The 11<sup>th</sup> workshop of the APS Topical Group on Hadronic Physics

Mathieu Ouillon

### Conventional vs. Al-assisted Track Finding

• Feed both algorithms with track candidates



3/15/25

Mathieu Ouillon

## Summary and Outlook

### • ALERT physics program:

- Tagged processes will provide insight into the origin of the EMC effect
- Tagged DIS measurements will help differentiate between models
- Tagged DVCS will bridge the gap between partonic and nucleonic interpretations of the EMC ratio
- Tagged measurements have better control on uncertainties associated with FSIs
- We have developed an AI-assisted MLP for track finding:
  - Evaluated the model's efficiency and purity as a function of momentum, threshold, and current
  - Compared efficiency of conventional and AI-assisted algorithms
  - Efficiency is always higher than 90%
- Future work:
  - Check the efficiency and purity of real data using elastic scattering
  - Improve the model with other information as input (energy deposited and angle between hits)

Thanks

This work is supported in part by the U.S. DOE award #: DE-FG02-07ER41528