Quantum Entanglement Correlations in Double Parton Distributions

Eric Kolbusz Baruch College, City University of New York

based on work done with Adrian Dumitru arXiv:2303.07408, 2501.12312

Entanglement in the Proton

Goal: understand the d.o.f. inside hadrons, and the relationships between them

Entanglement in the Proton

Goal: understand the d.o.f. inside hadrons, and the relationships between them

Lots of recent work on quantum entanglement inside the proton, e.g.

- Kharzeev et al.: gluon entanglement at small x (arXiv:1702.03489, 2102.09773, 2408.01259, 2410.22331)
- Kovner et al.: gluon entanglement at small x, especially in CGC (arXiv:1506.05394, 1806.01089, 1901.08080, 2001.01726, 2304.08564)
- Hatta et al.: entanglement of spin (arXiv:2404.04208, 2410.16082)

Entanglement in the Proton

Goal: understand the d.o.f. inside hadrons, and the relationships between them

Lots of recent work on quantum entanglement inside the proton, e.g.

- Kharzeev et al.: gluon entanglement at small x (arXiv:1702.03489, 2102.09773, 2408.01259, 2410.22331)
- Kovner et al.: gluon entanglement at small x, especially in CGC (arXiv:1506.05394, 1806.01089, 1901.08080, 2001.01726, 2304.08564)
- Hatta et al.: entanglement of spin (arXiv:2404.04208, 2410.16082)

This talk: correlations due to quantum entanglement in two valence quarks at moderate x

ullet A product state $ho=
ho_{\mathsf{A}}\otimes
ho_{\mathsf{B}}$ has no correlations between subsystems A and B

$$- S(\rho) = S(\rho_{A}) + S(\rho_{B})$$

- ullet A product state $ho=
 ho_{\mathsf{A}}\otimes
 ho_{\mathsf{B}}$ has no correlations between subsystems A and B
 - $-\mathsf{S}(\rho) = \mathsf{S}(\rho_\mathsf{A}) + \mathsf{S}(\rho_\mathsf{B})$
- A separable state is a convex sum of product states $\rho = \sum_i p_i \, \rho_A^{(i)} \otimes \rho_B^{(i)}$
 - $-\operatorname{tr}\mathcal{O}\rho\neq\operatorname{tr}\left(\mathcal{O}_{\mathsf{A}}\rho_{\mathsf{A}}\right)\operatorname{tr}\left(\mathcal{O}_{\mathsf{B}}\rho_{\mathsf{B}}\right)$
 - classical correlations, e.g. states obtained by LOCC
 - subsystems can be quantum! only correlations are classically explained

- ullet A product state $ho=
 ho_{\mathsf{A}}\otimes
 ho_{\mathsf{B}}$ has no correlations between subsystems A and B
 - $-\mathsf{S}(\rho) = \mathsf{S}(\rho_\mathsf{A}) + \mathsf{S}(\rho_\mathsf{B})$
- A separable state is a convex sum of product states $\rho = \sum_i p_i \, \rho_A^{(i)} \otimes \rho_B^{(i)}$
 - $-\operatorname{tr}\mathcal{O}\rho\neq\operatorname{tr}\left(\mathcal{O}_{\mathsf{A}}\rho_{\mathsf{A}}\right)\operatorname{tr}\left(\mathcal{O}_{\mathsf{B}}\rho_{\mathsf{B}}\right)$
 - classical correlations, e.g. states obtained by LOCC
 - subsystems can be quantum! only correlations are classically explained
- ullet An entangled state is not separable \implies quantum correlations between subsystems

- A product state $\rho = \rho_A \otimes \rho_B$ has no correlations between subsystems A and B
 - $-\mathsf{S}(\rho) = \mathsf{S}(\rho_\mathsf{A}) + \mathsf{S}(\rho_\mathsf{B})$
- A separable state is a convex sum of product states $\rho = \sum_i p_i \, \rho_A^{(i)} \otimes \rho_B^{(i)}$
 - $-\operatorname{tr}\mathcal{O}\rho\neq\operatorname{tr}\left(\mathcal{O}_{\mathsf{A}}\rho_{\mathsf{A}}\right)\operatorname{tr}\left(\mathcal{O}_{\mathsf{B}}\rho_{\mathsf{B}}\right)$
 - classical correlations, e.g. states obtained by LOCC
 - subsystems can be quantum! only correlations are classically explained
- ullet An entangled state is not separable \implies quantum correlations between subsystems

Goal: identify the presence of quantum correlations between two subsystems (the momentum fractions of two valence quarks inside a proton)

Given a system described by ρ_{AB}

 ho_{AB}

Given a system described by ρ_{AB}

1. partition into subsystems A and B

3

Given a system described by ρ_{AB}

- 1. partition into subsystems A and B
- 2. find ρ_A by tracing over d.o.f. in "the environment" B

Given a system described by ρ_{AB}

- 1. partition into subsystems A and B
- 2. find ρ_A by tracing over d.o.f. in "the environment" B
- 3. $S(\rho_A) = -\operatorname{tr}(\rho_A \log \rho_A)$

Given a system described by ρ_{AB}

- 1. partition into subsystems A and B
- 2. find ρ_A by tracing over d.o.f. in "the environment" B
- 3. $S(\rho_A) = -\text{tr}(\rho_A \log \rho_A)$

If ρ_{AB} is a pure state:

- $S(\rho_{AB}) = 0$
- $S(\rho_A) > 0$ means A and B are entangled

$$ho_{\mathsf{AB}} = |\psi\rangle\langle\psi|$$

What if ρ_{AB} is a mixed state (S > 0)?

What if ρ_{AB} is a mixed state (S > 0)?

Nonzero von Neumann entropy does not indicate subsystem correlations:

• Consider a separable state with positive entropy $\rho_{AB} = \sum_i p_i \, \rho_A^{(i)} \otimes \rho_B^{(i)}, S(\rho_{AB}) > 0$

What if ρ_{AB} is a mixed state (S > 0)?

Nonzero von Neumann entropy does not indicate subsystem correlations:

- Consider a separable state with positive entropy $\rho_{AB} = \sum_i p_i \, \rho_A^{(i)} \otimes \rho_B^{(i)}, S(\rho_{AB}) > 0$
- Construct the reduced density matrices $\rho^A = \sum_i p_i \, \rho_A^{(i)}$ and $\rho^B = \sum_i p_i \, \rho_B^{(i)}$

What if ρ_{AB} is a mixed state (S > 0)?

Nonzero von Neumann entropy does not indicate subsystem correlations:

- Consider a separable state with positive entropy $\rho_{AB} = \sum_i p_i \, \rho_A^{(i)} \otimes \rho_B^{(i)}, S(\rho_{AB}) > 0$
- Construct the reduced density matrices $\rho^A = \sum_i p_i \, \rho_A^{(i)}$ and $\rho^B = \sum_i p_i \, \rho_B^{(i)}$
- Subadditivity of entropy: $S(\rho^A) + S(\rho^B) \ge S(\rho_{AB}) > 0$

What if ρ_{AB} is a mixed state (S > 0)?

Nonzero von Neumann entropy does not indicate subsystem correlations:

- Consider a separable state with positive entropy $\rho_{AB} = \sum_i p_i \, \rho_A^{(i)} \otimes \rho_B^{(i)}, S(\rho_{AB}) > 0$
- Construct the reduced density matrices $\rho^A = \sum_i p_i \, \rho_A^{(i)}$ and $\rho^B = \sum_i p_i \, \rho_B^{(i)}$
- Subadditivity of entropy: $S(\rho^A) + S(\rho^B) \ge S(\rho_{AB}) > 0$
- If A = B then $S(\rho^A) \ge \frac{1}{2}S(\rho_{AB})$

What if ρ_{AB} is a mixed state (S > 0)?

Nonzero von Neumann entropy does not indicate subsystem correlations:

- Consider a separable state with positive entropy $\rho_{AB} = \sum_i p_i \, \rho_A^{(i)} \otimes \rho_B^{(i)}, S(\rho_{AB}) > 0$
- Construct the reduced density matrices $\rho^A = \sum_i p_i \, \rho_A^{(i)}$ and $\rho^B = \sum_i p_i \, \rho_B^{(i)}$
- Subadditivity of entropy: $S(\rho^A) + S(\rho^B) \ge S(\rho_{AB}) > 0$
- If A = B then $S(\rho^A) \ge \frac{1}{2}S(\rho_{AB})$

Subsystems inherit entropy from the overall system! ρ_{AB} is separable with no quantum correlations, but $S(\rho_A) > 0$

What if ρ_{AB} is a mixed state (S > 0)?

Nonzero von Neumann entropy does not indicate subsystem correlations:

- Consider a separable state with positive entropy $\rho_{AB} = \sum_i p_i \, \rho_A^{(i)} \otimes \rho_B^{(i)}, S(\rho_{AB}) > 0$
- Construct the reduced density matrices $\rho^A = \sum_i p_i \, \rho_A^{(i)}$ and $\rho^B = \sum_i p_i \, \rho_B^{(i)}$
- Subadditivity of entropy: $S(\rho^A) + S(\rho^B) \ge S(\rho_{AB}) > 0$
- If A = B then $S(\rho^A) \ge \frac{1}{2}S(\rho_{AB})$

Subsystems inherit entropy from the overall system! ρ_{AB} is separable with no quantum correlations, but $S(\rho_A) > 0$

Cannot use $S(\rho^A) > 0$ to draw any conclusions about the presence of quantum correlations between A and B.

e.g. proton wavefunction:

1. complete description is a pure state

e.g. proton wavefunction:

- 1. complete description is a pure state
- 2. trace over spin, color, etc

e.g. proton wavefunction:

- 1. complete description is a pure state
- 2. trace over spin, color, etc
- 3. momentum space w.f. $\Psi(x_i, k_i)$

 $\rho = |\Psi\rangle\langle\Psi|$

e.g. proton wavefunction:

- 1. complete description is a pure state
- 2. trace over spin, color, etc
- 3. momentum space w.f. $\Psi(x_i, k_i)$
- 4. trace over all d.o.f. except x_1 , x_2

e.g. proton wavefunction:

- 1. complete description is a pure state
- 2. trace over spin, color, etc
- 3. momentum space w.f. $\Psi(x_i, k_i)$
- 4. trace over all d.o.f. except x_1 , x_2
- 5. $S(\rho_{x_1,x_2;x'_1,x'_2}) > 0$

We want an algorithm that tells us if a general density matrix is separable or entangled

We want an algorithm that tells us if a general density matrix is separable or entangled ...but determining separability is NP-hard (Gurvits 2003, Gharibian 2010)

We want an algorithm that tells us if a general density matrix is separable or entangled ...but determining separability is NP-hard (Gurvits 2003, Gharibian 2010)

Peres-Horodecki criterion (Peres 1996, Horodecki et al. 1996): Given ρ over $\mathcal{H}^{\mathsf{A}} \otimes \mathcal{H}^{\mathsf{B}}$,

We want an algorithm that tells us if a general density matrix is separable or entangled ...but determining separability is NP-hard (Gurvits 2003, Gharibian 2010)

Peres-Horodecki criterion (Peres 1996, Horodecki et al. 1996): Given ρ over $\mathcal{H}^{\mathsf{A}}\otimes\mathcal{H}^{\mathsf{B}}$,

1. construct the partial transpose $\rho^{\mathsf{T}_\mathsf{B}}$ by transposing only in \mathcal{H}^B

$$\rho = \sum p_{kl}^{ij} |i\rangle\langle j| \otimes |k\rangle\langle l| \implies \rho^{\mathsf{T}_{\mathsf{B}}} = \sum p_{kl}^{ij} |i\rangle\langle j| \otimes |l\rangle\langle k| = \sum p_{lk}^{ij} |i\rangle\langle j| \otimes |k\rangle\langle l|$$

We want an algorithm that tells us if a general density matrix is separable or entangled ...but determining separability is NP-hard (Gurvits 2003, Gharibian 2010)

Peres-Horodecki criterion (Peres 1996, Horodecki et al. 1996): Given ρ over $\mathcal{H}^{\mathsf{A}}\otimes\mathcal{H}^{\mathsf{B}}$,

1. construct the partial transpose $\rho^{\mathsf{T}_\mathsf{B}}$ by transposing only in \mathcal{H}^B

$$\rho = \sum p_{kl}^{ij} |i\rangle\langle j| \otimes |k\rangle\langle l| \implies \rho^{\mathsf{T}_{\mathsf{B}}} = \sum p_{kl}^{ij} |i\rangle\langle j| \otimes |l\rangle\langle k| = \sum p_{lk}^{ij} |i\rangle\langle j| \otimes |k\rangle\langle l|$$

2. find the eigenvalues λ_i of $\rho^{\mathsf{T}_\mathsf{B}}$

We want an algorithm that tells us if a general density matrix is separable or entangled ...but determining separability is NP-hard (Gurvits 2003, Gharibian 2010)

Peres-Horodecki criterion (Peres 1996, Horodecki et al. 1996): Given ρ over $\mathcal{H}^{\mathsf{A}}\otimes\mathcal{H}^{\mathsf{B}}$,

1. construct the partial transpose $\rho^{\mathsf{T}_\mathsf{B}}$ by transposing only in \mathcal{H}^B

$$\rho = \sum p_{kl}^{ij} \left| i \right\rangle \! \langle j | \otimes | k \rangle \! \langle l | \implies \rho^{\mathsf{T}_{\mathsf{B}}} = \sum p_{kl}^{ij} \left| i \right\rangle \! \langle j | \otimes | l \rangle \! \langle k | = \sum p_{lk}^{ij} \left| i \right\rangle \! \langle j | \otimes | k \rangle \! \langle l |$$

- 2. find the eigenvalues λ_i of $\rho^{\mathsf{T}_\mathsf{B}}$
- 3. calculate the negativity $\mathcal{N} = -\sum \lambda_i \, \Theta(-\lambda_i)$

We want an algorithm that tells us if a general density matrix is separable or entangled ...but determining separability is NP-hard (Gurvits 2003, Gharibian 2010)

Peres-Horodecki criterion (Peres 1996, Horodecki et al. 1996): Given ρ over $\mathcal{H}^{\mathsf{A}}\otimes\mathcal{H}^{\mathsf{B}}$,

1. construct the partial transpose $\rho^{\mathsf{T}_\mathsf{B}}$ by transposing only in \mathcal{H}^B

$$\rho = \sum p_{kl}^{ij} \left| i \right\rangle \! \langle j | \otimes | k \rangle \! \langle l | \implies \rho^{\mathsf{T}_{\mathsf{B}}} = \sum p_{kl}^{ij} \left| i \right\rangle \! \langle j | \otimes | l \rangle \! \langle k | = \sum p_{lk}^{ij} \left| i \right\rangle \! \langle j | \otimes | k \rangle \! \langle l |$$

- 2. find the eigenvalues λ_i of $\rho^{\mathsf{T}_\mathsf{B}}$
- 3. calculate the negativity $\mathcal{N} = -\sum \lambda_i \Theta(-\lambda_i)$

If
$$\rho$$
 is separable, then $\rho = \sum_{i} p_{i} \, \rho_{A}^{(i)} \otimes \rho_{B}^{(i)} \implies \rho^{T_{B}} = \sum_{i} p_{i} \, \rho_{A}^{(i)} \otimes \rho_{B}^{(i)T} \implies \mathcal{N}(\rho) = 0$

We want an algorithm that tells us if a general density matrix is separable or entangled ...but determining separability is NP-hard (Gurvits 2003, Gharibian 2010)

Peres-Horodecki criterion (Peres 1996, Horodecki et al. 1996): Given ρ over $\mathcal{H}^{\mathsf{A}}\otimes\mathcal{H}^{\mathsf{B}}$,

1. construct the partial transpose $\rho^{\mathsf{T}_\mathsf{B}}$ by transposing only in \mathcal{H}^B

$$\rho = \sum p_{kl}^{ij} \left| i \right\rangle \! \langle j | \otimes | k \rangle \! \langle l | \implies \rho^{\mathsf{T}_{\mathsf{B}}} = \sum p_{kl}^{ij} \left| i \right\rangle \! \langle j | \otimes | l \rangle \! \langle k | = \sum p_{lk}^{ij} \left| i \right\rangle \! \langle j | \otimes | k \rangle \! \langle l |$$

- 2. find the eigenvalues λ_i of $\rho^{\mathsf{T}_\mathsf{B}}$
- 3. calculate the negativity $\mathcal{N} = -\sum \lambda_i \, \Theta(-\lambda_i)$

If
$$\rho$$
 is separable, then $\rho = \sum_{i} p_{i} \, \rho_{A}^{(i)} \otimes \rho_{B}^{(i)} \implies \rho^{T_{B}} = \sum_{i} p_{i} \, \rho_{A}^{(i)} \otimes \rho_{B}^{(i)T} \implies \mathcal{N}(\rho) = 0$

 $\implies \mathcal{N}(\rho) \neq 0$ guarantees the presence of quantum correlations between A and B!

The PEN Algorithm

A nonzero negativity only tells us that quantum correlations exist, not

- how they manifest
- what the density matrix would look like without them

The PEN Algorithm

A nonzero negativity only tells us that quantum correlations exist, not

- how they manifest
- what the density matrix would look like without them

Solution: "Purge Entanglement Negativity" algorithm constructs a ρ' with $\mathcal{N}(\rho')=0$

The PEN Algorithm

A nonzero negativity only tells us that quantum correlations exist, not

- how they manifest
- what the density matrix would look like without them

Solution: "Purge Entanglement Negativity" algorithm constructs a ρ' with $\mathcal{N}(\rho')=0$

1. take the partial transpose of the density matrix ρ

$$\rho' = \rho^{\mathsf{T}_{\mathsf{E}}}$$

A nonzero negativity only tells us that quantum correlations exist, not

- how they manifest
- what the density matrix would look like without them

Solution: "Purge Entanglement Negativity" algorithm constructs a ρ' with $\mathcal{N}(\rho')=0$

- 1. take the partial transpose of the density matrix ρ
- 2. diagonalize it to find the eigenvalues

$$\rho' = \mathsf{U} \rho^{\mathsf{T}_{\mathsf{B}}} \mathsf{U}^{\dagger}$$

A nonzero negativity only tells us that quantum correlations exist, not

- how they manifest
- what the density matrix would look like without them

Solution: "Purge Entanglement Negativity" algorithm constructs a ho' with $\mathcal{N}(
ho')=0$

- 1. take the partial transpose of the density matrix ρ
- 2. diagonalize it to find the eigenvalues
- 3. multiply each λ_i by $\Theta(\lambda_i)$

$$\rho' =$$

$$\Theta U \rho^{\mathsf{T}_{\mathsf{B}}} U^{\dagger}$$

A nonzero negativity only tells us that quantum correlations exist, not

- how they manifest
- what the density matrix would look like without them

Solution: "Purge Entanglement Negativity" algorithm constructs a ρ' with $\mathcal{N}(\rho')=0$

- 1. take the partial transpose of the density matrix ρ
- 2. diagonalize it to find the eigenvalues
- 3. multiply each λ_i by $\Theta(\lambda_i)$
- 4. undiagonalize

$$\rho' = U^{\dagger}\Theta U \rho^{\mathsf{T}_{\mathsf{B}}} U^{\dagger}U$$

A nonzero negativity only tells us that quantum correlations exist, not

- how they manifest
- what the density matrix would look like without them

Solution: "Purge Entanglement Negativity" algorithm constructs a ρ' with $\mathcal{N}(\rho')=0$

- 1. take the partial transpose of the density matrix ρ
- 2. diagonalize it to find the eigenvalues
- 3. multiply each λ_i by $\Theta(\lambda_i)$
- 4. undiagonalize
- 5. untranspose, enforce ${
 m tr}=1$ with ${\sf N}=rac{1}{1+\mathcal{N}(
 ho)}$

$$\rho' = \mathsf{N} \left[\mathsf{U}^\dagger \Theta \mathsf{U} \rho^{\mathsf{T}_\mathsf{B}} \right]^{\mathsf{T}_\mathsf{B}}$$

Consider a totally antisymmetric state in the fundamental rep. of $SU(N_c)$ and trace over N_c-2 colors

$$\rho_{i_{1}...i_{N_{c}},i'_{1}...i'_{N_{c}}} = \frac{1}{N_{c}!} \, \epsilon^{i_{1}...i_{N_{c}}} \epsilon^{i'_{1}...i'_{N_{c}}} \implies \rho_{ij,i'j'} = \frac{1}{N_{c}(N_{c}-1)} \, (\delta_{ii'}\delta_{jj'} - \delta_{ij'}\delta_{i'j})$$

Consider a totally antisymmetric state in the fundamental rep. of $SU(N_c)$ and trace over N_c-2 colors

$$\rho_{i_{1}...i_{N_{c}},i'_{1}...i'_{N_{c}}} = \frac{1}{N_{c}!} \, \epsilon^{i_{1}...i_{N_{c}}} \epsilon^{i'_{1}...i'_{N_{c}}} \implies \rho_{ij,i'j'} = \frac{1}{N_{c}(N_{c}-1)} \, (\delta_{ii'}\delta_{jj'} - \delta_{ij'}\delta_{i'j})$$

Spectrum can be explicitly found for all N_c : $\mathcal{N}(\rho_{ij,i'j'}) = \frac{1}{N_c}$

Consider a totally antisymmetric state in the fundamental rep. of $SU(N_c)$ and trace over N_c-2 colors

$$\rho_{i_{1}...i_{N_{c}},i'_{1}...i'_{N_{c}}} = \frac{1}{N_{c}!} \, \epsilon^{i_{1}...i_{N_{c}}} \epsilon^{i'_{1}...i'_{N_{c}}} \implies \rho_{ij,i'j'} = \frac{1}{N_{c}(N_{c}-1)} \, (\delta_{ii'}\delta_{jj'} - \delta_{ij'}\delta_{i'j})$$

Spectrum can be explicitly found for all N_c : $\mathcal{N}(\rho_{ij,i'j'}) = \frac{1}{N_c}$

Use PEN to remove negativity:

$$\begin{split} S(\rho_{ij,i'j'}) &= 2\log N_c - \log 2 - \frac{1}{N_c} - \frac{1}{2{N_c}^2} + \mathcal{O}({N_c}^{-3}) \\ S(\rho'_{ij,i'j'}) &= 2\log N_c \\ &\qquad \qquad - \frac{1}{N_c^2} + \mathcal{O}({N_c}^{-3}) \end{split}$$

Consider a totally antisymmetric state in the fundamental rep. of $SU(N_c)$ and trace over N_c-2 colors

$$\rho_{i_1\dots i_{N_c},i'_1\dots i'_{N_c}} = \frac{1}{N_c!} \, \epsilon^{i_1\dots i_{N_c}} \epsilon^{i'_1\dots i'_{N_c}} \implies \rho_{ij,i'j'} = \frac{1}{N_c(N_c-1)} \, (\delta_{ii'}\delta_{jj'} - \delta_{ij'}\delta_{i'j})$$

Spectrum can be explicitly found for all N_c : $\mathcal{N}(\rho_{ij,i'j'}) = \frac{1}{N_c}$

Use PEN to remove negativity:

$$\begin{split} S(\rho_{ij,i'j'}) &= 2\log N_c - \log 2 - \frac{1}{N_c} - \frac{1}{2{N_c}^2} + \mathcal{O}({N_c}^{-3}) \\ S(\rho'_{ij,i'j'}) &= 2\log N_c \\ &\qquad \qquad - \frac{1}{{N_c}^2} + \mathcal{O}({N_c}^{-3}) \end{split}$$

By construction, the differences are entirely explained by the removed quantum correlations!

Consider the Bell states $|\Phi^{\pm}\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle\pm|11\rangle\right)$ and $|\Psi^{\pm}\rangle=\frac{1}{\sqrt{2}}\left(|01\rangle\pm|10\rangle\right)$

Consider the Bell states $|\Phi^{\pm}\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle\pm|11\rangle\right)$ and $|\Psi^{\pm}\rangle=\frac{1}{\sqrt{2}}\left(|01\rangle\pm|10\rangle\right)$

Form e.g. $\rho_{\Phi^+} = |\Phi^+\rangle\langle\Phi^+|$, then the action of PEN is

$$\rho \mapsto \frac{2}{3} \frac{\mathsf{I}_4}{4} + \frac{1}{3} \rho$$

Consider the Bell states $|\Phi^{\pm}\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle\pm|11\rangle\right)$ and $|\Psi^{\pm}\rangle=\frac{1}{\sqrt{2}}\left(|01\rangle\pm|10\rangle\right)$

Form e.g. $\rho_{\Phi^+} = |\Phi^+\rangle\langle\Phi^+|$, then the action of PEN is

$$\rho \mapsto \frac{2}{3} \frac{\mathsf{I}_4}{4} + \frac{1}{3} \rho$$

This is a Werner state, invariant under all unitary operators of the form $U \otimes U$

- ullet interpolates between a Bell ho and the totally mixed state: $\lambda rac{l_4}{4} + (1-\lambda)
 ho$
- separable exactly when $\lambda \geq \frac{2}{3}$
- $\lambda = \frac{2}{3}$ is the closest separable state to ρ (Dahl et al. 2006)

Consider the Bell states $|\Phi^{\pm}\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle\pm|11\rangle\right)$ and $|\Psi^{\pm}\rangle=\frac{1}{\sqrt{2}}\left(|01\rangle\pm|10\rangle\right)$

Form e.g. $\rho_{\Phi^+} = |\Phi^+\rangle\langle\Phi^+|$, then the action of PEN is

$$\rho \mapsto \frac{2}{3} \frac{\mathsf{I}_4}{4} + \frac{1}{3} \rho$$

This is a Werner state, invariant under all unitary operators of the form $U \otimes U$

- ullet interpolates between a Bell ho and the totally mixed state: $\lambda rac{l_4}{4} + (1-\lambda)
 ho$
- separable exactly when $\lambda \geq \frac{2}{3}$
- $\lambda = \frac{2}{3}$ is the closest separable state to ρ (Dahl et al. 2006)

In this case, PEN gives the closest separable state to $\rho!$

Multi-parton Interactions

In high energy collisions two (or more) hard parton scatterings may occur

$$\sigma_{\mathrm{DPS}} \sim \int \mathrm{d}x_1 \cdots \mathrm{d}x_4 \, f_{qq}(x_1,x_2) \, f_{qq}(x_3,x_4) \, \hat{\sigma}(x_1,x_3) \, \hat{\sigma}(x_2,x_4)$$

Multi-parton Interactions

In high energy collisions two (or more) hard parton scatterings may occur

$$\sigma_{\mathrm{DPS}} \sim \int \mathrm{d}x_1 \cdots \mathrm{d}x_4 \, f_{qq}(x_1,x_2) \, f_{qq}(x_3,x_4) \, \hat{\sigma}(x_1,x_3) \, \hat{\sigma}(x_2,x_4)$$

Operator definition of dPDF:

$$\begin{split} f_{qq}(x_1,x_2) &= \langle P | \frac{\pi P^+}{(2\pi)^3} \int d^2z \int dz_1^- dz_2^- dz_3^- \ e^{-ix_2 P^+(z_1^- - z_2^-) - ix_1 P^+ z_3^-} \ O(z_1^- + \overrightarrow{z}, z_2^- + \overrightarrow{z}) \ O(z_3^-,0) \ | P \rangle \\ &= \rho_{x_1x_2,x_1x_2} \\ \text{with } O(z,y) &= \bar{q}(z) \gamma^+ q(y) \end{split}$$

dPDFs encode correlations between partons in the proton

$$f_{ij}(x_1,x_2,Q^2) = f_i(x_1,Q^2) f_j(x_2,Q^2) \cdot C_{ij}(x_1,x_2,Q^2)$$

dPDFs encode correlations between partons in the proton

$$f_{ij}(x_1, x_2, Q^2) = f_i(x_1, Q^2) f_j(x_2, Q^2) \cdot C_{ij}(x_1, x_2, Q^2)$$

we always trace over flavor

dPDFs encode correlations between partons in the proton

we always trace over flavor

$$f_{ij}(x_1,x_2,Q^2) = f_i(x_1,Q^2) f_j(x_2,Q^2) \cdot C_{ij}(x_1,x_2,Q^2)$$

we care about initial conditions, fix $Q^2 \sim$ a hadronic scale

dPDFs encode correlations between partons in the proton

$$f_{ij}(x_1,x_2,Q^2) = f_i(x_1,Q^2)f_j(x_2,Q^2) \cdot C_{ij}(x_1,x_2,Q^2)$$

In the case of no correlations:

- $C(x_1, x_2) = \Theta(1 x_1 x_2)$
- $f_{qq}(x_1, x_2) = f_q(x_1) f_q(x_2) \iff \rho_{x_1 x_2, x_1 x_2} = \rho_{x_1 x_1} \otimes \rho_{x_2 x_2}$

we always trace over flavor

we care about initial conditions, fix $Q^2 \sim$ a hadronic scale

dPDFs encode correlations between partons in the proton

we always trace over flavor

$$f_{ij}(x_1,x_2,Q^2) = f_i(x_1,Q^2) f_j(x_2,Q^2) \cdot C_{ij}(x_1,x_2,Q^2)$$

In the case of no correlations:

- $C(x_1, x_2) = \Theta(1 x_1 x_2)$
- $f_{qq}(x_1, x_2) = f_q(x_1) f_q(x_2) \iff \rho_{x_1 x_2, x_1 x_2} = \rho_{x_1 x_1} \otimes \rho_{x_2 x_2}$

this factorized dPDF

- remains factorized using DGLAP to evolve to higher Q²
- does not accurately model the correlations inside the proton

we care about initial conditions, fix $Q^2 \sim$ a hadronic scale

Consider $x_i \gtrsim 0.1$ and $k_i^2 \lesssim \Lambda_{QCD}^2$,

⇒ approximate the light cone state of the proton in terms of its leading Fock state

Consider $x_i \gtrsim 0.1$ and $k_i^2 \lesssim \Lambda_{QCD}^2$,

⇒ approximate the light cone state of the proton in terms of its leading Fock state

Effective three-quark wavefunction:

$$|P\rangle = \int\limits_{[0,1]_3} \prod_{i=1\cdots 3} \frac{dx_i}{2x_i} \; \delta\!\left(\!1 - \sum_i x_i\!\right) \int \prod_{i=1\cdots 3} \frac{d^2k_i}{(2\pi)^3} \; (2\pi)^3 \, \delta^2\!\left(\sum_i \overrightarrow{k_i}\right) \; \Psi_{\rm qqq} \left(k_1^\mu, k_2^\mu, k_3^\mu\right) |k_1^\mu; k_2^\mu; k_3^\mu\rangle \label{eq:polynomial}$$

Consider $x_i \gtrsim 0.1$ and $k_i^2 \lesssim \Lambda_{QCD}^2$,

⇒ approximate the light cone state of the proton in terms of its leading Fock state

Effective three-quark wavefunction:

$$|P\rangle = \int\limits_{[0,1]^3} \prod_{i=1\cdots 3} \frac{dx_i}{2x_i} \; \delta\!\left(\!1 - \sum_i x_i\!\right) \int \prod_{i=1\cdots 3} \frac{d^2k_i}{(2\pi)^3} \; (2\pi)^3 \, \delta^2\!\left(\sum_i \overrightarrow{k_i}\right) \, \Psi_{\rm qqq} \left(k_1^\mu, k_2^\mu, k_3^\mu\right) |k_1^\mu; k_2^\mu; k_3^\mu\rangle \label{eq:polynomial}$$

We use the Brodsky and Schlumpf wavefunction

$$\Psi_{\mathrm{qqq}}\left(x_{i},\overrightarrow{k_{i}}\right)=N\,\sqrt{x_{1}x_{2}x_{3}}\,\,e^{-\mathcal{M}^{2}/2\beta^{2}},\,\,\mathcal{M}^{2}=\sum\frac{k_{i}^{2}+m_{q}^{2}}{x_{i}}$$

with $m_q = 0.26 \, \text{GeV}$, $\beta = 0.55 \, \text{GeV}$

Consider $x_i \gtrsim 0.1$ and $k_i^2 \lesssim \Lambda_{QCD}^2$,

⇒ approximate the light cone state of the proton in terms of its leading Fock state

Effective three-quark wavefunction:

$$|P\rangle = \int\limits_{[0,1]^3} \prod_{i=1\cdots 3} \frac{dx_i}{2x_i} \; \delta\!\left(\!1 - \sum_i x_i\!\right) \int \prod_{i=1\cdots 3} \frac{d^2k_i}{(2\pi)^3} \; (2\pi)^3 \, \delta^2\!\left(\sum_i \overrightarrow{k_i}\right) \; \Psi_{\rm qqq} \left(k_1^\mu, k_2^\mu, k_3^\mu\right) |k_1^\mu; k_2^\mu; k_3^\mu\rangle \label{eq:polynomial}$$

We use the Brodsky and Schlumpf wavefunction

$$\Psi_{\mathrm{qqq}}\left(x_{i},\overrightarrow{k_{i}}\right)=N\,\sqrt{x_{1}x_{2}x_{3}}\;e^{-\mathcal{M}^{2}/2\beta^{2}},\;\mathcal{M}^{2}=\sum\frac{k_{i}^{2}+m_{q}^{2}}{x_{i}}$$

with $m_q = 0.26 \, \text{GeV}$, $\beta = 0.55 \, \text{GeV}$

Density matrix:
$$\rho_{\alpha,\alpha'} = \langle \alpha' | \mathsf{P}' \rangle \langle \mathsf{P} | \alpha \rangle = \Psi_{\mathrm{qqq}}^* \left(\mathsf{x}_\mathsf{i}', \overrightarrow{\mathsf{k}_\mathsf{i}}' \right) \Psi_{\mathrm{qqq}} \left(\mathsf{x}_\mathsf{i}, \overrightarrow{\mathsf{k}_\mathsf{i}} \right)$$

We are only interested in x d.o.f. so trace over k_i: $\rho_{x_1x_2,x_1'x_2'}=\operatorname{tr}_{k_1,k_2,k_3}\,\rho_{\alpha,\alpha'}$

We are only interested in x d.o.f. so trace over k_i : $\rho_{x_1x_2,x_1'x_2'} = \operatorname{tr}_{k_1,k_2,k_3} \rho_{\alpha,\alpha'}$

<u>Problem</u>: partial transposition is not a valid operation on the constrained x_1, x_2 system

$$x_1 + x_2 \le 1$$

 $x'_1 + x'_2 \le 1$ \implies $x_1 + x'_2 \le 1$
 $x'_1 + x_2 \le 1$

We are only interested in x d.o.f. so trace over k_i: $\rho_{x_1x_2,x_1'x_2'} = \operatorname{tr}_{k_1,k_2,k_3} \rho_{\alpha,\alpha'}$

<u>Problem</u>: partial transposition is not a valid operation on the constrained x_1, x_2 system

$$x_1 + x_2 \le 1$$

 $x'_1 + x'_2 \le 1$ \implies $x_1 + x'_2 \le 1$
 $x'_1 + x_2 \le 1$

We cannot use negativity, PEN, etc. to analyze correlations in these coordinates

We are only interested in x d.o.f. so trace over k_i: $\rho_{x_1x_2,x_1'x_2'} = \operatorname{tr}_{k_1,k_2,k_3} \rho_{\alpha,\alpha'}$

<u>Problem</u>: partial transposition is not a valid operation on the constrained x_1, x_2 system

$$x_1 + x_2 \le 1$$

 $x'_1 + x'_2 \le 1$ \implies $x_1 + x'_2 \le 1$
 $x'_1 + x_2 \le 1$

We cannot use negativity, PEN, etc. to analyze correlations in these coordinates

We are only interested in x d.o.f. so trace over k_i : $\rho_{x_1x_2,x_1'x_2'} = \operatorname{tr}_{k_1,k_2,k_3} \rho_{\alpha,\alpha'}$

<u>Problem</u>: partial transposition is not a valid operation on the constrained x_1, x_2 system

$$x_1 + x_2 \le 1$$

 $x'_1 + x'_2 \le 1$ \implies $x_1 + x'_2 \le 1$
 $x'_1 + x_2 \le 1$

We cannot use negativity, PEN, etc. to analyze correlations in these coordinates

Solution: variables that describe internal dynamics with $\delta(1-x_1-x_2-x_3)$ constraint implicit

$$\xi = \frac{x_1}{x_1 + x_2}, \quad \eta = x_1 + x_2$$
 (Bakker et al. 1979)

We are only interested in x d.o.f. so trace over k_i : $\rho_{x_1x_2,x_1'x_2'} = \operatorname{tr}_{k_1,k_2,k_3} \rho_{\alpha,\alpha'}$

<u>Problem</u>: partial transposition is not a valid operation on the constrained x_1, x_2 system

$$x_1 + x_2 \le 1$$
 \implies $x_1 + x_2' \le 1$ $x_1' + x_2' \le 1$

We cannot use negativity, PEN, etc. to analyze correlations in these coordinates

Solution: variables that describe internal dynamics with $\delta(1-x_1-x_2-x_3)$ constraint implicit

$$\xi = \frac{x_1}{x_1 + x_2}, \quad \eta = x_1 + x_2$$
 (Bakker et al. 1979)

The support of x_i means $0 \le \xi, \eta \le 1$ with no other constraints, so we can partial transpose

$$\rho_{\mathsf{x}_1\mathsf{x}_2,\mathsf{x}_1'\mathsf{x}_2'} \to \rho_{\xi\eta,\xi'\eta'} \xrightarrow{\mathsf{PEN}} \rho'_{\xi\eta,\xi'\eta'} \to \rho'_{\mathsf{x}_1\mathsf{x}_2,\mathsf{x}_1'\mathsf{x}_2'}$$

PEN on $\rho_{\xi\eta,\xi'\eta'}$ respects the momentum sum rule

Effects of PEN

- structure of distribution is preserved
- peak less pronounced with information spread out over the full distribution

$$\xi = \frac{\mathsf{x}_1}{\mathsf{x}_1 + \mathsf{x}_2}$$
$$\eta = \mathsf{x}_1 + \mathsf{x}_2$$

Effects of PEN

- structure of distribution is preserved
- peak less pronounced with information spread out over the full distribution
- ullet largest effects are far from the peak! (asymmetric momenta with small x_1+x_2)

Entanglement Correlations

The differences in $C(x_1, x_2)$ are easiest to see by looking at slices of constant x_2

Entanglement Correlations

The differences in $C(x_1, x_2)$ are easiest to see by looking at slices of constant x_2

 $x_2 = 0.5$:

- for $x_1 \ll x_2$:
 - pre-PEN BS increasing
 - post-PEN decreasing!
- maximum at $x \sim 0.2$ becomes saddle point

Broniowski-Arriola: (arXiv:1310.8419)

Entanglement Correlations

The differences in $C(x_1, x_2)$ are easiest to see by looking at slices of constant x_2

 $x_2 = 0.5$:

- for $x_1 \ll x_2$:
 - pre-PEN BS increasing
 - post-PEN decreasing!
- maximum at $x \sim 0.2$ becomes saddle point

The only increasing plot for small x_1 is the lightcone w.f. with quantum correlations due to negativity

Broniowski-Arriola: (arXiv:1310.8419)

QCD Scale Evolution

So far everything is at an "initial condition" energy scale Q_0^2

How do classical vs quantum correlations evolve to higher scales? We need to evolve the <u>entire</u> density matrix $\rho_{\xi\eta,\xi'\eta'}$ (not just the diagonal = dPDF)

QCD Scale Evolution

So far everything is at an "initial condition" energy scale Q_0^2

How do classical vs quantum correlations evolve to higher scales? We need to evolve the entire density matrix $\rho_{\xi\eta,\xi'\eta'}$ (not just the diagonal = dPDF)

This is difficult! Consider only the first step $q \to qg$

So far everything is at an "initial condition" energy scale Q_0^2

How do classical vs quantum correlations evolve to higher scales? We need to evolve the <u>entire</u> density matrix $\rho_{\xi\eta,\xi'\eta'}$ (not just the diagonal = dPDF)

This is difficult! Consider only the first step $\textbf{q} \rightarrow \textbf{q} \textbf{g}$

So far everything is at an "initial condition" energy scale Q_0^2

How do classical vs quantum correlations evolve to higher scales? We need to evolve the <u>entire</u> density matrix $\rho_{\xi\eta,\xi'\eta'}$ (not just the diagonal = dPDF)

This is difficult! Consider only the first step $\mathbf{q}\to\mathbf{q}\mathbf{g}$

goes into wavefunction renormalization

So far everything is at an "initial condition" energy scale Q_0^2

How do classical vs quantum correlations evolve to higher scales? We need to evolve the <u>entire</u> density matrix $\rho_{\xi\eta,\xi'\eta'}$ (not just the diagonal = dPDF)

This is difficult! Consider only the first step $\textbf{q} \rightarrow \textbf{q} \textbf{g}$

goes into wavefunction renormalization

Six $\mathcal{O}(g^2)$ corrections to the three-quark density matrix, e.g.

$$\begin{split} \rho_{\xi\eta,\xi'\eta'}^{(1'1')} &= -\frac{\mathsf{g}^2\mathsf{C_FN_C}}{3} \frac{\mathsf{d}\xi}{\sqrt{4\xi(1-\xi)\xi'(1-\xi')}} \, \frac{\mathsf{d}\eta}{\sqrt{4\eta(1-\eta)\eta'(1-\eta')}} \, \frac{1}{4} \int \prod_{\mathsf{i}=1\cdots3} \frac{\mathsf{d}^2\mathsf{k_i}}{(2\pi)^3} \, (2\pi)^3 \, \delta^2 \bigg(\sum_{\mathsf{i}} \overrightarrow{\mathsf{k_i}} \bigg) \\ &\times \int_{\mathsf{x}}^1 \frac{\mathsf{d}\mathsf{x_g}}{\mathsf{x_g}} \frac{\mathsf{d}^2\mathsf{k_g}}{16\pi^3} \, \Theta(\eta'\xi'-\mathsf{x_g}) \, \Big[1 + (1-\mathsf{z}')^2 \Big] \, \bigg[\frac{1}{\mathsf{k_g}^2 + \Delta'^2} - \frac{1}{\mathsf{k_g}^2 + \Lambda'^2} \bigg] \, \Psi^*(\mathsf{x_i'}; \, \overrightarrow{\mathsf{k_i}}) \Psi(\mathsf{x_i}; \, \overrightarrow{\mathsf{k_i}}) \end{split}$$

with the same c.o.m. variables

$$\begin{array}{ccc} \xi = \frac{\mathsf{x}_1}{\mathsf{x}_1 + \mathsf{x}_2} & \mathsf{x}_1 = \eta \xi \\ \eta = \mathsf{x}_1 + \mathsf{x}_2 & \Longrightarrow & \mathsf{x}_2 = \eta (1 - \xi) \\ & \mathsf{x}_3 = 1 - \eta \end{array}$$

in addition to

$$z' = \frac{x_g}{x_1'}$$

$$\Delta'^2 = z'^2 m_{col}^2$$

$$\Lambda'^2 = z'^2 M_{LIV}^2$$

For the other diagrams we no longer have $\sum x_i = 1$ in the daughter quarks

Shift momenta, keep ξ and η

$$\xi = \frac{\mathsf{x}_1}{\mathsf{x}_1 + \mathsf{x}_2} \qquad \Rightarrow \qquad \mathsf{x}_1 = \eta \xi
\eta = \mathsf{x}_1 + \mathsf{x}_2 \qquad \Rightarrow \qquad \mathsf{x}_2 = \eta (1 - \xi)
\mathsf{x}_3 = 1 - \eta - \mathsf{x}_{\mathsf{g}}$$

so now e.g. $z' = \frac{x_g}{x_1' + x_g}$, also $\overrightarrow{n} = \overrightarrow{k_g} - z(\overrightarrow{k_1} + \overrightarrow{k_g})$

$$\begin{split} \rho_{\xi\eta,\xi'\eta'}^{(11')} &= \frac{2\mathsf{g}^2\mathsf{C_FN_c}}{3} \, \frac{\mathrm{d}\xi}{\sqrt{4\xi(1-\xi)\xi'(1-\xi')}} \, \frac{\mathrm{d}\eta}{\sqrt{4\eta(1-\eta)\eta'(1-\eta')}} \, \frac{1}{4} \int \prod_{\mathsf{i}=1\cdots 3} \frac{\mathrm{d}^2\mathsf{k_i}}{(2\pi)^3} \, (2\pi)^3 \, \delta^2 \bigg(\sum_{\mathsf{i}} \overrightarrow{\mathsf{k_i}} \bigg) \\ &\times \int_{\mathsf{x}}^1 \frac{\mathsf{d}\mathsf{x_g}}{\mathsf{x_g}} \, \frac{\mathsf{d}^2\mathsf{k_g}}{16\pi^3} \, \frac{\Theta(1-\eta-\mathsf{x_g})}{\sqrt{1-\frac{\mathsf{x_g}}{1-\eta}}} \, \frac{\Theta(1-\eta'-\mathsf{x_g})}{\sqrt{1-\frac{\mathsf{x_g}}{1-\eta'}}} \, \frac{1}{\sqrt{1+\frac{\mathsf{x_g}}{\xi\eta}}} \, \frac{1}{\sqrt{1+\frac{\mathsf{x_g}}{\xi'\eta'}}} \, (2-\mathsf{z}-\mathsf{z}'+\mathsf{z}\mathsf{z}') \\ &\times \bigg[\frac{\overrightarrow{\mathsf{n}}' \cdot \overrightarrow{\mathsf{n}}'}{(\mathsf{n}^2+\Delta^2)(\mathsf{n}'^2+\Delta'^2)} - \frac{1}{2} \frac{1}{\mathsf{k_g}^2+\Lambda^2} - \frac{1}{2} \frac{1}{\mathsf{k_g}^2+\Lambda'^2} \bigg] \, \Psi^*(\mathsf{x}_1'+\mathsf{x_g},\mathsf{x}_2',\mathsf{x}_3';\, \overrightarrow{\mathsf{k_i}}) \Psi(\mathsf{x}_1+\mathsf{x_g},\mathsf{x}_2,\mathsf{x}_3;\, \overrightarrow{\mathsf{k_i}}) \end{split}$$

DGLAP Evolution

The diagonal (dPDF) evolves according to the dPDF DGLAP equations (convolution of dPDF with splitting functions)

virtual corrections:

$$\begin{split} Q^2 \frac{\partial}{\partial Q^2} \rho_{x_1 x_2, x_1 x_2}^{(11)} &= Q^2 \frac{\partial}{\partial Q^2} \rho_{x_1 x_2, x_1 x_2}^{(1'1')} = -\frac{\alpha_s}{4\pi} \int\limits_{x/x_1}^1 \mathrm{d}z \, \mathsf{P}_{\mathsf{g} \leftarrow \mathsf{q}}(\mathsf{z}) \, \rho_{x_1 x_2, x_1 x_2}^{\mathsf{qqq}} \\ Q^2 \frac{\partial}{\partial Q^2} \rho_{x_1 x_2, x_1 x_2}^{(22)} &= Q^2 \frac{\partial}{\partial Q^2} \rho_{x_1 x_2, x_1 x_2}^{(2'2')} = -\frac{\alpha_s}{4\pi} \int\limits_{x/x_2}^1 \mathrm{d}z \, \mathsf{P}_{\mathsf{g} \leftarrow \mathsf{q}}(\mathsf{z}) \, \rho_{x_1 x_2, x_1 x_2}^{\mathsf{qqq}} \\ Q^2 \frac{\partial}{\partial Q^2} \rho_{x_1 x_2, x_1 x_2}^{(33)} &= Q^2 \frac{\partial}{\partial Q^2} \rho_{x_1 x_2, x_1 x_2}^{(3'3')} = -\frac{\alpha_s}{4\pi} \int\limits_{\frac{x}{1-x_1-x_2}}^1 \mathrm{d}z \, \mathsf{P}_{\mathsf{g} \leftarrow \mathsf{q}}(\mathsf{z}) \, \rho_{x_1 x_2, x_1 x_2}^{\mathsf{qqq}} \end{split}$$

DGLAP Evolution

The diagonal (dPDF) evolves according to the dPDF DGLAP equations (convolution of dPDF with splitting functions)

real emission corrections:

$$\begin{split} Q^2 \frac{\partial}{\partial Q^2} \rho_{x_1 x_2, x_1 x_2}^{(11')} &= \frac{2\alpha_s}{4\pi} \int\limits_{x_1/(1-x_2)}^{x_1/(x_1+x)} \frac{\mathrm{d}z}{z} \, \mathsf{P}_{\mathsf{g}\leftarrow\mathsf{q}}(1-\mathsf{z}) \, \rho_{\frac{x_1}{\mathsf{z}} x_2, \frac{x_1}{\mathsf{z}} x_2}^{\mathsf{qqq}} \\ Q^2 \frac{\partial}{\partial Q^2} \rho_{x_1 x_2, x_1 x_2}^{(22')} &= \frac{2\alpha_s}{4\pi} \int\limits_{x_2/(1-x_1)}^{x_2/(x_2+x)} \frac{\mathrm{d}z}{\mathsf{z}} \, \mathsf{P}_{\mathsf{g}\leftarrow\mathsf{q}}(1-\mathsf{z}) \, \rho_{x_1 \frac{x_2}{\mathsf{z}}, x_1 \frac{x_2}{\mathsf{z}}}^{\mathsf{qqq}} \\ Q^2 \frac{\partial}{\partial Q^2} \rho_{x_1 x_2, x_1 x_2}^{(33')} &= \frac{2\alpha_s}{4\pi} \int\limits_{\frac{\mathsf{x}}{1-x_1-x_2}}^{1} \mathrm{d}z \, \mathsf{P}_{\mathsf{g}\leftarrow\mathsf{q}}(\mathsf{z}) \, \rho_{x_1 x_2, x_1 x_2}^{\mathsf{qqq}} \end{split}$$

dPDF after one collinear gluon emission

The main effect of removing entanglement correlations is now at small $x_1 \sim x_2$

• von Neumann entropy does not indicate entanglement if starting from a mixed state, and does not provide a procedure for removing entanglement to study the effect on observables

- von Neumann entropy does not indicate entanglement if starting from a mixed state, and does not provide a procedure for removing entanglement to study the effect on observables
- Negativity gives a computable necessary condition for a state to be separable

- von Neumann entropy does not indicate entanglement if starting from a mixed state, and does not provide a procedure for removing entanglement to study the effect on observables
- Negativity gives a computable necessary condition for a state to be separable
- Given a density matrix, the PEN Algorithm constructs a new density matrix that differs only by the lack of quantum correlations associated with negativity (negative EVs of partial transpose)

- von Neumann entropy does not indicate entanglement if starting from a mixed state, and does not provide a procedure for removing entanglement to study the effect on observables
- Negativity gives a computable necessary condition for a state to be separable
- Given a density matrix, the PEN Algorithm constructs a new density matrix that differs only by the lack of quantum correlations associated with negativity (negative EVs of partial transpose)
- Brodsky and Schlumpf wavefunction has strong quantum correlations for asymmetric and small momenta

- von Neumann entropy does not indicate entanglement if starting from a mixed state, and does not provide a procedure for removing entanglement to study the effect on observables
- Negativity gives a computable necessary condition for a state to be separable
- Given a density matrix, the PEN Algorithm constructs a new density matrix that differs only by the lack of quantum correlations associated with negativity (negative EVs of partial transpose)
- Brodsky and Schlumpf wavefunction has strong quantum correlations for asymmetric and small momenta
- Single step of scale evolution (collinear gluon emission) for the entire density matrix now has entanglement negativity correlations primarily for small and similar x_1 , x_2

dPDF Initial Conditions

Some models from the literature:

1. Gaunt-Stirling: (arXiv:0910.4347)

$$C(x_1, x_2) = \frac{(1 - x_1 - x_2)^2}{(1 - x_1)^{2+n}(1 - x_2)^{2+n}}$$

- n = 0.5 for valence quarks, 0 for sea quarks
- violates the quark number sum rule
- 2. Broniowski-Arriola: (arXiv:1310.8419)

$$\begin{split} f_q(x) &= \frac{168}{145} (1-x)^3 (1+6x+16x^2+6x^3+x^4) \\ f_{qq}(x_1,x_2) &= \frac{1008}{29} (1-x_1)^2 (1-x_2)^2 (x_1+x_2)^2 \end{split}$$

nonzero on the boundaries of phase space (fixed with DGLAP)

Discretization

The QIT discussion, PEN, etc. is for discrete systems! \implies need to make sure continuum limit is well defined for $\rho_{\xi\eta,\xi'\eta'}$

Discretize [0,1] into bins of size $\Delta \xi$ and $\Delta \eta$ and include the Jacobian so $\operatorname{tr} \tilde{\rho} = \sum \lambda_{\mathsf{i}}$

$$ilde{
ho}_{\xi\eta,\xi'\eta'} = rac{\Delta\xi\,\Delta\eta}{\sqrt{4\eta(1-\eta)\xi(1-\xi)}\,\,4\eta'(1-\eta')\xi'(1-\xi')}\,
ho_{\xi\eta,\xi'\eta'}$$

For

- $\bullet \ \Delta \xi = \Delta \eta = \mathsf{N}^{-1}$
- N = 20, 40, 80, 160

we find the eigenvalue distr. of $\tilde{\rho}^{\mathsf{T}_\mathsf{B}}$ approaches

$$\frac{dN_{\lambda}}{d\lambda} = \left((N+1)^2 - \sum_{i=1}^{n} C_i \right) \delta(\lambda) + \sum_{i=1}^{n} C_i \delta(\lambda - \lambda_i)$$

Comparison to Models

The differences in $C(x_1, x_2)$ are easiest to see by looking at slices of constant x_2

$$x_2 = 0.14$$
:

- for $x_1 \ll x_2$, PEN effects are large
- at moderate $x_1 \sim 0.1-0.5$
 - PEN effects are much smaller
 - BA model similar to BS, increasing
 - GS model always decreasing at fixed x₂
- for $x_1 \gg x_2$, small effects (η large)

Comparison to Models

The differences in $C(x_1, x_2)$ are easiest to see by looking at slices of constant x_2

 $x_2 = 0.31$:

- again PEN effects are large for $x_1 \ll x_2$
- smaller for moderate, large x₁
- still good agreement of BA and BS

