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Entanglement in the Proton

Goal: understand the d.o.f. inside hadrons, and the relationships between them

Lots of recent work on quantum entanglement inside the proton, e.g.

e Kharzeev et al.: gluon entanglement at small x
(arXiv:1702.03489, 2102.09773, 2408.01259, 2410.22331)

e Kovner et al.: gluon entanglement at small x, especially in CGC
(arXiv:1506.05394, 1806.01089, 1901.08080, 2001.01726, 2304.08564)

e Hatta et al.: entanglement of spin
(arXiv:2404.04208, 2410.16082)

This talk: correlations due to quantum entanglement in two valence quarks at moderate x
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Some QIT Terminology

e A product state p = pa ® pg has no correlations between subsystems A and B

— S(p) = S(pa) + S(ps)

e A separable state is a convex sum of product states p =) . pi pg> ® pg)

— trOp # tr (Oapa) tr (Opps)

— classical correlations, e.g. states obtained by LOCC

— subsystems can be quantum! only correlations are classically explained

e An entangled state is not separable == quantum correlations between subsystems

Goal: identify the presence of quantum correlations between two subsystems
(the momentum fractions of two valence quarks inside a proton)
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Entanglement Entropy

Given a system described by pag

1. partition into subsystems A and B

2. find pa by tracing over d.o.f. in “the environment” B

3. S(pa) = —tr (palog pa)

If pag is a pure state: :/
® S(pag) =0

e S(pa) > 0 means A and B are entangled A

pA = tre paB

paB = U)XV
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Entropy is not enough...

What if pag is a mixed state (S > 0)?

Nonzero von Neumann entropy does not indicate subsystem correlations:

e Consider a separable state with positive entropy pag = > . pi pg) & pg), S(pag) >0
e Construct the reduced density matrices p* = Y. p; pg) and p® =5 p; ,0|(3i)

e Subadditivity of entropy: S(p*) + S(p®) > S(pag) > 0

o If A =B then S(p*) > 1S(pag)

Subsystems inherit entropy from the overall system!
pag Is separable with no quantum correlations, but S(pa) > 0

Cannot use S(p™) > 0 to draw any conclusions about the presence of quantum correlations
between A and B.
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Entropy is not enough...

e.g. proton wavefunction:

complete description is a pure state
trace over spin, color, etc
momentum space w.f. W(x;, k;)

trace over all d.o.f. except x1, X

S(pxl,X2;X1,X§) >0 {I?

ok b=
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Negativity

We want an algorithm that tells us if a general density matrix is separable or entangled
...but determining separability is NP-hard (Gurvits 2003, Gharibian 2010)

Peres-Horodecki criterion (Peres 1996, Horodecki et al. 1996): Given p over HA ® HEB,

1. construct the partial transpose p'8 by transposing only in HB

2. find the eigenvalues \; of p'®
3. calculate the negativity N = — > X\ O(—\)

If p is separable, then p=> . pip )®p():>pTB—Zp. )®,0() — N(p) =0

—> N (p) # 0 guarantees the presence of quantum correlations between A and B!
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The PEN Algorithm

A nonzero negativity only tells us that quantum correlations exist, not

e how they manifest

e what the density matrix would look like without them
Solution: “Purge Entanglement Negativity” algorithm constructs a p’ with A'(p’) =0

. take the partial transpose of the density matrix p

1
2. diagonalize it to find the eigenvalues

3. multiply each \; by ©())) ,0, — N [UT@UIOTB}TB
4

. undiagonalize
1
1+ N(p)

5. untranspose, enforce tr = 1 with N =
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colors

1

iy i i 1
Piy.ing il = N !61""\'%1 Ne == pijirj) = No(Ne — 1) (i 030 — dijr Oirj)

1

Spectrum can be explicitly found for all N¢: N (pjj.ivj ) = N
Use PEN to remove negativity: )
1 1
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SU(N) Toy Problem

Consider a totally antisymmetric state in the fundamental rep. of SU(N.) and trace over N. — 2
colors

1 1

pil...iNc,ii...if\lc — N !Eil'”iNCGil“'iNc — Pij,i'y = N (N — 1) (5ii/5jj/ — 5ij/5i/j)

1
Spectrum can be explicitly found for all N¢: N (pijiiy) = Y
Use PEN to remove negativity: -
1 1

S(piiii) = 2logNe — log2 — — — O(N.3

(pij,iir) 0g 0g Ne  2N.2 + O( )

1 _
S(pij,ry) = 2log N TN +O(N.)

C

By construction, the differences are entirely explained by the removed quantum correlations!
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PEN on Bell States

Consider the Bell states |®*) = % (]00) £ ]11)) and |W*) = L (|01) & |10))

-

Form e.g. pp+ = |®T)(®T|, then the action of PEN is
21, 1

This is a Werner state, invariant under all unitary operators of the form U ® U

e interpolates between a Bell p and the totally mixed state: )\'Z“ + (1= MX)p
e separable exactly when A > %

e )\ = £ is the closest separable state to p (Dahl et al. 2006)

In this case, PEN gives the closest separable state to p!
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Multi-parton Interactions

In high energy collisions two (or more) hard parton scatterings may occur

oppPs ~ /dx1 <+ - dXq fqq (X1, X2) faq(X3,Xa) 6 (X1, X3) G(X2,Xa)
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Multi-parton Interactions

In high energy collisions two (or more) hard parton scatterings may occur

ODPS N/dxl"'dX4qu(X1,X2)qu(X3,X4) (X17X3) (X2,X4)

Operator definition of dPDF:

pt+
faq(x1,%2) = <P| 5 /d2 /dzl dz, dz; e “hePT oy mny ) mhaP Tz O(z; + Z2 +7)0(z3,0)|P;

/
:
F

— Pxyxa,x1x2

with O(z,y) = &(z)7"(y) ) a

X2
X3

/
:
%
/

X4 \
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From dPDFs to Density Matrices
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From dPDFs to Density Matrices

_ _ we always trace over flavor
dPDFs encode correlations between partons in the proton /

fij(X17X27 Qz) = fi(xq, Q2)fj(x27 Qz) : Cij<X17X27 Q2)

In the case of no correlations: \
we care about initial conditions,

o C(x1,x2) =O(1 —x1 —x2) fix Q% ~ a hadronic scale

o foq(x1,%2) = fq(x1)fq(X2) = Pruoxe = Praxi @ Proxe

this factorized dPDF

e remains factorized using DGLAP to evolve to higher Q?

e does not accurately model the correlations inside the proton
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Consider x; 2 0.1 and

The Proton Wavefunction

2 2
ki S.J /\QCD'

— approximate the light cone state of the proton in terms of its leading Fock state

Effective three-quark wavefunction:

P= ) 5

-x)

1l

d2ki 3 2 — P Loa i
(2r)? (272 2 ) ki | Waqq (KE Kb, KE) [KE' K5 kE)
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The Proton Wavefunction

Consider x; 2 0.1 and k? < A§cp,
—> approximate the Ilght cone state of the proton in terms of its leading Fock state

Effective three-quark wavefunction:

= [ g T

d2
2m) 52<Zk> e (K K K

We use the Brodsky and Schlumpf wavefunction
k? + mﬁ

X
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\quq (xi, ki) = N \/Xle e_j\/l2/2527 ./\/l2 _ Z
with mgq = 0.26 GeV, 5 = 0.55 GeV
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The Proton Wavefunction

Consider x; 2 0.1 and k? < A§cp,
—> approximate the Ilght cone state of the proton in terms of its leading Fock state

Effective three-quark wavefunction:

= [ g I

d2
27'(' 52 (Z kl) \quq (kljlliakgvk/;)|klllakl2$7kg>

We use the Brodsky and Schlumpf wavefunction
k? + mﬁ

X

_>

\quq (x;, ki) = N \/Xle e—M2/2B27 ./\/12 _ Z
with mgq = 0.26 GeV, 5 = 0.55 GeV

— —
Density matrix: pq,or = (o'|P")(Pla) = W? (x , ki ’) Viaq (x;, ki)
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We are only interested in x d.o.f. so trace over k;: Pxixa xx, = WLk kaoks P,

Problem: partial transposition is not a valid operation on the constrained x;, x> system

X1 +x2 <1 A X1 +x5, <1
xj +x5, <1 x]+x <1

We cannot use negativity, PEN, etc. to analyze correlations in these coordinates
pOSt—PEN qu(Xl,Xz)

pre-PEN fqq(x1,%2)

1.0 1.0

0.8 0.8

0.6

X2
N
X2

0.4 0.4

0.2 0.2

0.0
0.0 0.2 0.4 0.6 0.8 0.0

13 ’ ‘ . X1
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Center of Mass Variables

We are only interested in x d.o.f. so trace over ki pyx, x/x) = trkykoiks Parv,a

Problem: partial transposition is not a valid operation on the constrained xi, x> system

X1 +x2 <1 R X1+ x5 <1
xj+x5, <1 x] +x2 <1

We cannot use negativity, PEN, etc. to analyze correlations in these coordinates

Solution: variables that describe internal dynamics with (1 — x; — xo — x3) constraint implicit

X
£ = L N = X1+ X2 (Bakker et al. 1979)
X1 + X2
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Center of Mass Variables

We are only interested in x d.o.f. so trace over ki py ., x/x) = tky ko ks Pavsa

Problem: partial transposition is not a valid operation on the constrained x;, x> system

X1 +x2 <1 A X1+ x5 <1
x]+x5, <1 x]+x <1

We cannot use negativity, PEN, etc. to analyze correlations in these coordinates

Solution: variables that describe internal dynamics with (1 — x; — xo — x3) constraint implicit

X
£ = L N = X1+ X2 (Bakker et al. 1979)
X1 + Xo
The support of x; means 0 < &, < 1 with no other constraints, so we can partial transpose

PEN / /
Prixaxixh 7 Pen'n’ — 7 Penein’ 7 Prxyxa xix)

PEN on p¢y ¢/ respects the momentum sum rule




Effects of PEN

e structure of distribution is preserved £ = X1
_ : T X1 + X2
e peak less pronounced with information spread out over the full distribution N =%y +x
= X1 2

pre'PEN qu (57 77) pOSt_PEN qu (57 77)

1.0 1.0




Effects of PEN

e structure of distribution is preserved £ = 1
L : . X1 + X2
e peak less pronounced with information spread out over the full distribution N =%y +x
= X1 + X2
o largest effects are far from the peak! (asymmetric momenta with small x; + x)
Ny pre-PEN C(&,n) - . post-PEN C(ﬁ,n) .

101 101
0.8 0.8
3 10° 3 10°
= E 10_1 < 3 10—1
0.4 [ 0.4 i
L 102 - 1072
0.2 A
0.0 T T T T 10_4 0.0 10_4

0.0 0.2 0.4 0.6 0.8 1.0
14 §
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Entanglement Correlations

The differences in C(x1,x5) are easiest to see by looking at slices of constant x;
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Entanglement Correlations

The differences in C(x1,xo) are easiest to see by looking at slices of constant x;

Broniowski-Arriola: (arXiv:1310.8419)
Gaunt-Stirling: (arXiv:0910.4347)

xo = 0.5:
2 C(x1, X = 0.500)
o for x; < xo: 1.75 1 b;fOriEPI\EIN
— after
. . —— Gaunt-Stirling
— pre-PEN BS increasing 1.50 - —— Broniowski-Arriola
— post-PEN decreasing! .
e maximum at x ~ 0.2 becomes saddle point |, |
0.75 -
0.50 -
0.25
0.00 T T
0.0 0.6 0.8 1.0
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Entanglement Correlations

The differences in C(x1,x») are easiest to see by looking at slices of constant x;

Broniowski-Arriola: (arXiv:1310.8419)
Gaunt-Stirling: (arXiv:0910.4347)

xp = 0.5b:
C(x1,x2 =0.500)
o for x; < Xo: 1.75 - before PEN
—— after PEN
. . —— Gaunt-Stirling
— pre-PEN BS increasing 1.50 - —— Broniowski-Arriola
- - inol
post-PEN decreasing! .
e maximum at x ~ 0.2 becomes saddle point |, |
The only increasing plot for small x; is B
the lightcone w.f. with quantum correlations
due to negativity 0]

0.25 A

0.00

0.6 0.8 1.0
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How do classical vs quantum correlations evolve to higher scales?
We need to evolve the entire density matrix pg, ¢,y (not just the diagonal = dPDF)

This is difficult! Consider only the first step q — qg
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QCD Scale Evolution

Six O(g?) corrections to the three-quark density matrix, e.g.

p(1'1’) _ ~ g°CeNc d§
£n,g'n’ 3 \/45(1 — &N =¢) \/477
1 2
ng d k 2 1
1+ (1-— — v
Xg 16,3 O - >[ + Z>Hk§+A’2 k§+/\'2] (5

with the same c.o.m. variables

X

Comhn -9 sy
n=x1+x s =1—1n :

in addition to p \ :
z’:i—,g / |
A’2—z’12m2 :

col

2 _2
/\—ZMUV



QCD Scale Evolution

For the other diagrams we no longer have ) x; = 1 in the daughter quarks

Shift momenta, keep £ and n §6§GIDD%
— |

£ = X x1 =ng
e x2 =1(1 &) \
p

I
M =X+ X x3 =1—17—Xg :
X — — =
sonoweg zZ = —% alson =k, —z(k; +k |
g / g g
X1 + Xg I
|
, 262CeN, d 1 d2k, —
Péﬂg)f gl § _/ _ (2r) 82 Z %
e 3 Val-9g1-¢) \/4771— 4) 2, (2m) i
2k . . 1 . .
X/ ng d 3 @ Xg) 77 Xg) 2—Z—Z/—|—ZZ/)
« Xg lbm /1 — /1 \/1+ \/1+ 25
ﬁ n N — ._>
18 : (n? + A2)(n2 + A?) 2 k2 +/\2 B 2 kg + /\/2 W™ (o + xg, %2, X33 ki )W (1 + Xg, X2, X35 ki )
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DGLAP Evolution

The diagonal (dPDF) evolves according to the dPDF DGLAP equations
(convolution of dPDF with splitting functions)

virtual corrections:

1,
Q2—,0(11)
an X1X2,X1X2

0
2 22
Q a—QZIO)((;[XQ),X1X2

0
2 33
Q a—(sz)(QXg),X1X2

Q2

QZ

Q2

0 @)

8Q2 pX1X2,X1X2 =

0 (@)

8Q2 pX1X2,X1X2 —

0 33%)

Olg
i

Olg

A7

Olg
aQQ 'OX1X2,X1X2 -

47

qqq
dz Pg<_q (Z) Px1x2,x1%2

X /x1
1

qqq
dZ Pg<—q (Z) px1x2,x1x2

X /X2

1
q4qq
/ dZ Pg<—q (Z) pX1X2,X1X2

X
1—x1—x9
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DGLAP Evolution

The diagonal (dPDF) evolves according to the dPDF DGLAP equations
(convolution of dPDF with splitting functions)

real emission corrections:

Q? 822 p(11’)
X1X2,X1X2

) /
2 22
Q aQ2 p>(<1X2 ,)X1X2

0 (33

2
Q 8Q2 pX1X2,X1X2 o

5 x1 / (X14x) 1
Q y4
| Fredt-oey,
X1/(1—X2)
5 x2 / (x2+x) q
Q v
| TPt
X2/(1—X1)
5 1
Q
47‘(‘s / dzPgeq (2) pgg((jzl,mxz
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dPDF after
one collinear
gluon emission

The main effect of removing
entanglement correlations is
now at small x; ~ x»

Evolved dPDF in &-n space Evolved dPDF in &-n space after PEN

1.0 1.0

0.8 0.8

0.6 0.6
< <
0.4 0.4
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

3 3
Evolved dPDF in x;1-x, space Evolved dPDF in x;1-x, space after PEN
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Summary

e von Neumann entropy does not indicate entanglement if starting from a mixed state, and
does not provide a procedure for removing entanglement to study the effect on observables
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Summary

von Neumann entropy does not indicate entanglement if starting from a mixed state, and
does not provide a procedure for removing entanglement to study the effect on observables

Negativity gives a computable necessary condition for a state to be separable

Given a density matrix, the PEN Algorithm constructs a new density matrix that differs

only by the lack of quantum correlations associated with negativity (negative EVs of partial
transpose)

Brodsky and Schlumpf wavefunction has strong quantum correlations for asymmetric and
small momenta

Single step of scale evolution (collinear gluon emission) for the entire density matrix now
has entanglement negativity correlations primarily for small and similar x1, x5



dPDF Initial Conditions

Some models from the literature:

1. Gaunt-Stirling: (arXiv:0910.4347)

(1 — X1 — X2)2
(1 _ X1)2+n(1 _ X2)2—|—n

C(Xl, X2) =

e n = 0.5 for valence quarks, 0 for sea quarks
e violates the quark number sum rule

2. Broniowski-Arriola: (arXiv:1310.8419)

168
fo(x) = m(l —x)>(1 + 6x 4 16x% + 65° + x*)
1008
faq(x1,%2) = E(l —x1)%(1 = x2)?(x1 + x2)°

e nonzero on the boundaries of phase space (fixed with DGLAP)

21+1
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Discretization

The QIT discussion, PEN, etc. is for discrete systems!

— need to make sure continuum limit is well defined for Pen.'n!

Discretize [0, 1] into bins of size A and An and include the Jacobian so trp = )"\

AL An

Pens = a1 — e — &) a7 — e - €)

For

o A = An = N—1
e N = 20,40,80, 160

we find the eigenvalue distr. of 5'® approaches

dN)\ , n n
- = <(N+1) ;ci> 5(A)+;ci5(x—xi)

2 4

| mlm

"
O3

0

2 4
S

0

2 4
~<
Ul_

0

2
S

0

Pén.g'n’

438

0.0

0.2

0.4

0.6

0.8

1677

0.0

0.2

0.4

0.6

0.8

6557

0.0

0.4

0.6

0.8

25916

0.0

0.2

0.4

0.6

0.8



Comparison to Models

The differences in C(x1,xo) are easiest to see by looking at slices of constant x;

x> = 0.14:
i C(x1, X = 0.140)
8_
e for x; < x2, PEN effects are large before PE
—— after PEN
7- . .
e at moderate X1 v 01—05 —— Gaunt-Stirling

—— Broniowski-Arriola

— PEN effects are much smaller
— BA model similar to BS, increasing
— GS model always decreasing at fixed x5 41

e for x; > xp, small effects (7 large)

0.0 0.2 0.4 0.6 0.8
21+3 X1

1.0
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Comparison to Models

The differences in C(x1,xo) are easiest to see by looking at slices of constant x;

xo = 0.31:

e again PEN effects are large for x; < x5
e smaller for moderate, large x;

e still good agreement of BA and BS

1.75 A

1.50 A

1.25 -

1.00 -

0.75 -

0.50 A

0.25 A

0.00

C(x1, X2 = 0.310)

before PEN
— after PEN
—— Gaunt-Stirling
—— Broniowski-Arriola

0.0

0.2 0.4 0.6
X1

0.8

1.0
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