

Searching for Three-nucleon Short-range Correlations

Shujie Li APS-GHP workshop 2025 @ Anaheim, CA March 14, 2025

Nucleons in Nuclei:

Independent Particle Shell Model(IPSM)

• Low energy, non-relativistic:

$$ig[\sum_i -rac{\hbar^2}{2m_N}
abla_i^2 + \sum_{i < j} v_2(oldsymbol{x}_i,oldsymbol{x}_j) + \sum_{i < j < k} v_3(oldsymbol{x}_i,oldsymbol{x}_j,oldsymbol{x}_k) + ...ig] \Psi_A = E_A \Psi_A$$

• Nucleons move independently in an averaged potential (mean field) induced by the rest of the nucleus system:

Nucleons in Nuclei

Independent Particle Shell Model(IPSM)

Lapikas1993 @ NIKHEF: (e,e'p)

Nucleons in Nuclei

Independent Particle Shell Model(IPSM)

Lapikas1993 @ NIKHEF: (e,e'p)

Curves: Bound state wave functions evaluated in a mean-field potential with **fitted** spectroscopic strength

Nucleons in Nuclei

Independent Particle Shell Model(IPSM)

Valence shells are NOT filled: strength < 1

Nucleon Momentum Distribution

"The main effects of NN correlations is to generate high momentum and high removal energy components"

C. Atti and S. Simula, PRC 53. 1689 (1996)

High Momentum Nucleons are Correlated Pairs

C(p,p'pn)X at BNL:

Coincidence measurement to reconstruct the initial states of correlated nucleons

2N Isospin Configuration

Free nucleon-nucleon potential = Repulsive core + attractive tensor force S (spin) = 0, T (isospin) = 1: np, pp, nn pairs. The **tensor operator** $S_{1,2} = 0$, no attractive tensor force Enhanced by tensor force, S (spin) =1, T (isospin) = 0: Deuteron-like np pair. dominate in 2N SRC Subedi et al, Science 320, 1476 (2008) 500 Deuteron S and D ≈ Central 400 ≈ Tensor 80% 300 200 $S_{1,2} = 3(\vec{\sigma}_1 \cdot \hat{r}_{12})(\vec{\sigma}_2 \cdot \hat{r}_{12}) - \vec{\sigma}_1 \cdot \vec{\sigma}_2$ 100 V (MeV) 18% 0 -100 -200 1% -300 Single nucleons -400 0.5 1 1.5 2 2.5 3 n-n n-p D-D r(fm)

Isolate high momentum nucleons in (e,e') Kinematically

Experimental cut:

Q²>1.4 GeV², x>1.4 ⇒

Inclusive QE scattering on 2N SRC:

- High statistics
- Competing processes are kinematically suppressed at high x, high Q²

SRC Plateau / Bjorken x-scaling

High momentum tails should yield constant ratio if SRC-dominated

N. Fomin, et al., PRL 108 (2012) 092052

prob. of finding 2N SRC in nucleus A

4% high momentum component in deuteron wave function

SRC Plateau / Bjorken x-scaling

 $a_{2}(^{12}C) = 5$ $\Rightarrow 5 \times 4\% = 20\%$ SRC pairs jn ^{12}C

11

N. Fomin, et al., PRL 108 (2012) 092052

3N SRC

Three nucleon configuration with ultra high nucleon momentum and small center-of-mass motion.

Two extreme cases of momentum-sharing:

- 3N type I: Linear configuration The large momentum of a leading nucleon is balanced by two nucleons going backwards. Generated by two consecutive 2N SRC.
- 3N type II: Star configuration Total symmetric momentum sharing between three nucleons. Irreducible, with intermediate delta states.

3N configuration

3He Photon-disintegration $eA \rightarrow e + p + p + n$:

- Very difficult coincidence measurement at large momentum.
- Critical to validate the decay function calculation

 P_{r3}

Type II: large angle between recoils, high Emiss, lower probability

3N SRC scaling search

In (e,e'), isolate 3N SRC contribution at very high p_m \rightarrow higher x and Q^2

$$\sigma_A = \sigma_{QE}^0 + a_2(A)\sigma_2^0 + a_3(A)\sigma_3 + \dots$$

Past: Inconsistent results from early experiments

- Current: XEM2 @ JLab Hall C, 2022:
 - higher Q2, better resolution
 - Data under analysis

- Future: new proposal to probe 3N SRC at higher Q²
 - JLab PR-12-24-008, plan to re-submit to PAC

2N SRC revisit: scaling in light cone

light-cone momentum fraction of the nucleus carried by the interacting bound nucleon:

$$\alpha = A \frac{E_N - k_{N,z}}{E_A - k_{A,z}}$$

2N SRC revisit: scaling in light cone

light-cone momentum fraction of the nucleus carried by the interacting bound nucleon:

$$\alpha = A \frac{E_N - k_{N,z}}{E_A - k_{A,z}}$$

Observation from 2N SRC in ³He/D :

- Scaling down to Q² = 1 GeV² :
 - \circ More cancellation between FSI, CM motion \circ
- Onset at $\alpha_{2N} < 1.2 \rightarrow \text{pmin} \sim 200 \text{ MeV}$
 - Earlier onset in α_{2N} due to lower mean-field momenta: k_F <100 MeV in A=3

Implication on possible 3N SRC in ³H/³He :

- Scaling at low Q² :
 - FSI, COM etc. cancellations should be nearly complete in ³H/³He
- 3N onset at $\alpha_{2N} > 1.4 \rightarrow \text{pmin} \sim 400 \text{ MeV}$
 - Doubled the 2N SRC pmin to allow generation of two consecutive 2N SRC in linear configuration

3N SRC scaling in A=3?

³H/³He Data from JLab E12-11-112:

SL et al, Nature 609, 41-45 (2022)

- Only tritium target for high energy electron scattering in the past 30 years
- Mirror nuclei comparison to maximize isospin asymmetry

Next step:

Need more data at higher alpha, multiple Q2 to confirm the scaling. PR12-24-012, resubmission planned

2 np + 1 nn pairs

Why we need more ³H/³He data:

- Nuclear effect, competing processes etc largely canceled for a clean comparison of nnp v.s. Npp
- Pair with A/3 data for iso-scalar ratio A/(³H +³He)
- Extract 3N momentum sharing and isospin configurations for energetic nucleons:

- Compare with few-body calculations to test the boundary of non-rel wave function, and provide unique access to ultra-high momentum nucleons.
- Sensitive to isospin-dependent nuclear effect

Backup

Electron Detection

• High resolution spectrometer

Electron beam

- Magnets to "zoom in" the scattered electrons
- Reconstruct charged particle tracks
- Particle identification through time-of-flight, energy deposit, and threshold detectors

Target chamber

Quasi-elastic (QE) Scattering Kinematics

Quasi-elastic Scattering Competing processes

- a) Meson-exchange current (MEC):
 - 1/Q² suppression
- b) Isobar Current (IC):
 - \circ 1/Q² and x>1 suppression
- c) Final State Interactions (FSI):
 - **(e, e'p)**:
 - kinematics (recoil angle etc.) pre-selection
 - model-dependent corrections
 - \circ (e, e'): contained within the SRC pair at large Q²

Pmin for ground state 3N system

m_3: 3H or 3He mass

Line:
$$m_3 + v = 2\sqrt{m_N^2 + 0.25 p_m^2} + \sqrt{m_N^2 + \left(p_m + q\right)^2}$$

Star:
$$m_3 + v = 2\sqrt{m_N^2 + p_m^2} + \sqrt{m_N^2 + \left(p_m + q\right)^2}$$

Extracting np/pp ratio with lsotopes?

- (e,e'): higher stats, higher precision
- Ca40 vs Ca48: large isospin asymmetry

Extracting np/pp ratio with A=3 "mirror" nuclei

Tritium v.s. Helium-3:

- Only tritium target for high energy electron scattering in the past 30 years
- Low-density, 1000 Ci of tritium gas for safety concern

- Large isospin (neutron-proton) asymmetry
- Similar separation energy: 6.26 MeV v.s.
 5.49 MeV
- Similar center-of-mass motion of the pair
- Similar FSI
- Calculable* few-body systems

Inclusive cross section ratio:

- High statistics
- Systematic uncertainties canceled in the ratio

Extracting np/pp ratio with A=3 "mirror" nuclei

Extracting np/pp ratio with A=3 "mirror" nuclei

²⁷