

Probing Nuclear Structure of Heavy Ions at the Large Hadron

Collider

Wenbin Zhao

Lawrence Berkeley National Laboratory University of California, Berkeley

Collaborators: Heikki Mäntysaari, Björn Schenke, Chun Shen and Haojie Xu. GHP, 2025, APS Topical Group on Hadronic Physics, Anaheim, CA, USA

Nuclear Matter under Extreme Conditions

Credit: Chun Shen

- Heavy-ion collision dynamics is complex with multiple length/time scales.
- What is the smallest QGP droplet?
- What is the structure of QCD phase diagram?
- How does the strongly coupled liquid emerge from fundamental QCD interactions?
- Constrain the nuclear shape by final state observables (Inverse Problem).

Anisotropic Flows

Multistage Description of Heavy-Ion Collisions (Soft part)

- Initial conditions (3D-Glauber, TRENTo, IP-Glasma, AMPT, EKRT...)
- Viscous hydrodynamics (MUSIC, VISHew, CLVis, Trajectum...)
- Hadron cascade afterburner (UrQMD, SMASH, JAM...)

• Bulk dynamics: describe final soft particles $pT \lesssim 2$ GeV (more than 95% of the total particles)

Probing nuclear structure of heavy ions at the LHC

$$\mathsf{IP}\operatorname{-}\mathsf{Glasma} \to \mathsf{MUSIC} \to \mathsf{iSS} \longrightarrow \mathsf{UrQMD}$$

Nuclear structure and sub-nucleon parameters

Generalized Woods-Saxon profile

$$\begin{split} \rho(r,\Theta,\Phi) \propto \frac{1}{1+\exp\left([r-R(\Theta,\Phi)]/a\right)} \ , \ R(\Theta,\Phi) = R_0 \Big[1 + \underline{\beta_2} \Big(\cos\gamma Y_{20}(\Theta) + \sin\gamma Y_{22}(\Theta,\Phi)\Big) + \underline{\beta_3}Y_{30}(\Theta) + \underline{\beta_4}Y_{40}(\Theta) \Big] \\ \\ \hline \frac{1}{1+\exp\left([r-R(\Theta,\Phi)]/a\right)} \ , \ R(\Theta,\Phi) = R_0 \Big[1 + \underline{\beta_2} \Big(\cos\gamma Y_{20}(\Theta) + \sin\gamma Y_{22}(\Theta,\Phi)\Big) + \underline{\beta_3}Y_{30}(\Theta) + \underline{\beta_4}Y_{40}(\Theta) \Big] \\ \hline \frac{1}{2^{08}} \frac{1}{2^{08}} \frac{R_0^{WS}}{(11-S_1(\Phi))} \ , \ \frac{\beta_2^{WS}}{(11-S_1(\Phi))} \ , \ \frac{\beta_2^{WS}}{(11-S_1(\Phi))} \ , \ \frac{\beta_4^{WS}}{(11-S_1(\Phi))} \ , \ \frac{\beta_4^{WS}}{(11-S_1(\Phi))} \ , \ R(\Theta,\Phi) = R_0 \Big[1 + \underline{\beta_2} \Big(\cos\gamma Y_{20}(\Theta) + \sin\gamma Y_{22}(\Theta,\Phi)\Big) + \underline{\beta_3}Y_{30}(\Theta) + \underline{\beta_4}Y_{40}(\Theta) \Big] \\ \hline \frac{1}{2^{08}} \frac{1}{2^{08}} \frac{R_0^{WS}}{(11-S_1(\Phi))} \ , \ \frac{\beta_4^{WS}}{(11-S_1(\Phi))} \ , \ \frac{\beta_4^{WS}}{(11-S_1($$

• The nucleon parameters are fixed by fitting the diffractive J/Ψ data in e-p.

H. Mantysaari, B. Schenke, C. Shen and W. Zhao, Phys. Rev. C 110, no.5, 054913 (2024).

H. Mantysaari, B.Schenke, C. Shen and W. Zhao, Phys. Lett. B 833 (2022), 137348.

H. Mantysaari, B.Schenke, C. Shen and W. Zhao, [arXiv:2208.00396 [hep-ph]].

Hydrodynamic parameters

QGP Viscosities and Sub-nucleonic Structure

- v_2 ratios are largely insensitive to the QGP viscosity, despite the 25% smaller area in Xe+Xe than that in Pb+Pb at the same centrality.
- v_3 ratios shows some sensitivities to QGP's specific shear viscosity and subnucleonic fluctuations.

β_2 and a^{WS}

- v_2 ratios sensitive to β_2 . v_2 ratio at mid-central sensitive to a^{WS} , smaller a^{WS} leads to sharper edge in nuclear profile, impacts Pb and Xe nuclei differently with different radii.
- Combining the ratios of v_2 and v_3 could help to disentangle effects of sub-nucleonic fluctuations and skin thickness.

β_2 and a^{WS}

- Large β_2 deformation diminishes the relative contribution of shape fluctuations to the elliptic flow, which weak the $v_2 [p_T]$ correlation.
- Larger β_2 leads to the greater normalized variance of p_T , non-zero β_2 introduces more shape and size fluctuations.

- Larger nuclear skin depth allows nucleons to be more diffusively populated around the edge of the overlapping area, increasing the shape fluctuations, resulting more fluctuations in v_2 .
- $v_2\{4\}/v_2\{2\}$ is a sensitive probe to skin depth of the nuclear mass density. Combining charge radius from low-energy experiments can deduce the size of the neutron skin of nuclei.

Opportunities of light-ion Collisions

Pb + Ne-20 collisions: A high energy bowling allay!

G. Giacalone W. Zhao et al Phys. Rev. Lett. 134, 082301 (2025)

- Connecting ab initio inputs of light-nuclei with relativistic nuclear collisions.
- Easier to image the shapes of light-nuclei than symmetric light-ion collisions.

A Probe of Quark-Gluon Plasma

- No QGP-like J/ψ suppression in Pb+Ne.
- Flow sensitive to shapes of Ne and O
- Searching the QGP at LHCb.

G. Giacalone W. Zhao et al Phys. Rev. Lett. 134, 082301 (2025)

²⁰Ne

- The elliptic flow decorrelation in PbO is larger than in PbNe collisions.
- It leads to a larger v_2 {2} ratio than those results with boost- invariance in O+O and Ne+Ne collisions 15

Collectivity in Polarized deuterons + Ion

Collective flow in Polarized deuterons + Nuclei

- Opposite sign of $v_2{\Phi}$ between $j_z = \pm 1$ and $j_z = 0$ in $d^{\uparrow} + Pb$.
- Could be tested in the coming LHCb measurement.

H.Mantysaari, B.Schenke, C. Shen and W. Zhao in progress. LHCb: PoS SPIN2023, 036 (2024). P. Bozek and W. Broniowski, PhysRevLett.121.202301

Breathing Nuclei in Heavy-Ion Collisions

Nuclear can "Breath"

- Heavy-ion collision takes an eventby-event snapshot of colliding nuclei.
- The nuclear can have the event-byevent β_i fluctuation, which looks like the nucleus is breathing.

Haojie Xu, Wenbin Zhao, etc, al. in progress.

Solving the ultra-central $v_2 - v_3$ puzzle via "Breathing" Pb

- Constant β_3 of Pb can't reproduce the data in ultra-central Pb-Pb collisions.
- Event-by-event β_3 can solve the the ultra-central $v_2 v_3$ puzzle in Pb-Pb.

P. Carzon, S. Rao, M. Luzum, M. Sievert and J. Noronha Hostler, Phys. Rev. C 102, 054905 (2020). Haojie Xu, Wenbin Zhao, etc, al. in progress.

Summary

- Hydrodynamic response to geometry enables event-by-event image shapes of nuclei.
- Connecting *ab-initio* nuclear structure inputs and heavy-ion collisions open a new venue to study QCD at different scales.
- Studying collectivity polarized light nuclei + heavy ion help to understand the mechanism of collectivity in small systems.
- Nuclei is breathing, heavy-ion collisions provide good opportunity to probe it.

Thanks for Your Attentions!

Back Up