# Nucleon spin structure in the strong QCD regime

#### A. Deur

Thomas Jefferson National Accelerator Facility



Spin is responsible for shaping world:
•fundamental components of matter: spin ½
⇒ matter doesn't collapse.
•spin even bosons: attractive forces. e.g. nuclear force (pion), gravitation.
⇒stable nuclei, burning stars, structured universe...
•spin odd bosons: repulsive between like charges, attractive between oppo

•spin odd bosons: repulsive between like charges, attractive between opposite charges.
 ⇒ neutral atoms.

 $\Rightarrow$ Spin is key to the marvelous diversity of the universe



•Human curiosity: interesting to know how  $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + L_q$ .

•Nucleon: most of mass of known matter in the universe. Spin: Fundamental observable. Fundamental understanding of matter.

 $\Rightarrow$  understand its elementary bricks

- Spin degrees of freedom: additional handles to test theories.
  - Constituent quark model, Parity symmetry of physical laws, Ellis-Jaffe sum rule, ...
  - Spin permits more complete study of QCD;
    - mechanism of confinement;

•how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);



•Human curiosity: interesting to know how  $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + L_q$ . quark spin contribution gluon contribution during the spin contribution of the spin contributic of the spin contributic of t

• 1970s-1980s: success of constituent quark model. Suggests  $S_N = \frac{1}{2}\Delta\Sigma$ CERN's EMC experiment (1987):  $\Delta\Sigma \sim 0$ 

• Spin permits more complete study of QUD;

mechanism of confinement;

•how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);



• Human curiosity: interesting to know how  $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + L_q$ . quark spin contribution  $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + L_q$ .  $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + L_q$ .  $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + L_q$ .  $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + L_q$ .  $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + L_q$ .

1970s-1980s: success of constituent quark model. Suggests  $S_N = \frac{1}{2}\Delta\Sigma$ 

CERN's EMC experiment (1987):  $\Delta\Sigma \sim 0$ 

 $\Rightarrow$ Nucleon spin composition is not trivial. Thus it reveals interesting information on the nucleon structure and the mechanisms of the strong force

Spin permits more complete study of QCD;

mechanism of confinement;

•how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);



• Human curiosity: interesting to know how  $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + \frac{L_q}{4}$ quark spin contribution  $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + \frac{L_q}{4}$  $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + \frac{L_q}{4}$  $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + \frac{L_q}{4}$ 

Nucleon: most of mass of known matter in the universe. Spin: Fundamental observable.
 Fundamental understanding of matter.
 ⇒ understand its elementary bricks

• Spin degrees of freedom: additional handles to test theories.

- Constituent quark model, Parity symmetry of physical laws, Ellis-Jaffe sum rule, ...
- Spin permits more complete study of QCD;
  - mechanism of confinement;

•how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);



•Human curiosity: interesting to know how  $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + \frac{L_q}{4}$ quark spin contribution  $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + \frac{L_q}{4}$  $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + \frac{L_q}{4}$  $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{4} + \frac{L_q}{4}$ 

•Nucleon: most of mass of known matter in the universe. Spin: Fundamental observable. Fundamental understanding of matter.

 $\Rightarrow$  understand its elementary bricks

- Spin degrees of freedom: additional handles to test theories.
  - Constituent quark model, Parity symmetry of physical laws, Ellis-Jaffe sum rule, ...
  - Spin permits more complete study of QCD;
    - mechanism of confinement;

•how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);



Complex systems (many interacting parts). Fundamental theories and d.o.f become too unwieldy.



Molecular physics d.o.f: atoms, Van der Waals f.

Chemistry



Biology

Atomic physics d.o.f: electrons, nuclei, EM field Nuclear physics d.o.f: hadrons

Neurology

hadronic physics d.o.f: hadrons Psychology

Nuclear physics d.o.f: hadrons

> hadronic physics d.o.f: hadrons

Leading effective theory: Chiral Effective Field Theory (**xEFT**). Obtained using a Lagrangian consistent with QCD's chiral symmetry (neglecting quark masses). ⇒ Crucial piece for a complete understanding of Nature. Nuclear physics d.o.f: hadrons hadronic physics d.o.f: hadrons

Leading effective theory: Chiral Effective Field Theory (**xEFT**). Obtained using a Lagrangian consistent with QCD's chiral symmetry (neglecting quark masses).

 $\Rightarrow \underline{\text{Crucial piece for a complete}}\\ \underline{\text{understanding of Nature}}.$ 

Emerging quantities that characterize the nucleon: charge, mass, anomalous magnetic moment, polarizabilities...

Nuclear physics d.o.f: hadrons

> hadronic physics d.o.f: hadrons

## What are polarizabilities ?

Polarizabilities encode the 2<sup>nd</sup> order reaction of a body subjected to a (bona-fide, i.e.  $Q^2 \equiv -q^{\mu}q_{\mu} = 0$ ) electromagnetic field.  $\gamma(q^{\mu})$ 

The full reaction is described by two Compton scattering amplitudes,  $f_1$  (spin-independent) and  $f_2$  (spin-dependent).

At low photon energy v, one can expand them in powers of v:





## What are polarizabilities ?

Polarizabilities encode the 2<sup>nd</sup> order reaction of a body subjected to a (bona-fide, i.e.  $Q^2 \equiv -q^{\mu}q_{\mu} = 0$ ) electromagnetic field.  $\gamma(q^{\mu})$ 

The full reaction is described by two Compton scattering amplitudes,  $f_1$  (spin-independent) and  $f_2$  (spin-dependent).

At low photon energy v, one can expand them in powers of v: Electric polarizability

Spin-independent 
$$\rightarrow f_1(\nu) = \begin{bmatrix} -\frac{\alpha}{M} + (\alpha_E + \beta_M)\nu^2 + \mathcal{O}(\nu^4) & \text{-Polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) & \text{-Spin polarizability} \\ -\frac{\alpha\kappa^2}{2M^2}\nu + \mathcal{O}(\nu^5) & \text{-Spin polariza$$



## What are polarizabilities ?

Polarizabilities encode the 2<sup>nd</sup> order reaction of a body subjected to a (bona-fide, i.e.  $Q^2 \equiv -q^{\mu}q_{\mu} = 0$ ) electromagnetic field.  $\gamma(q^{\mu})$ 

The full reaction is described by two Compton scattering amplitudes,  $f_1$  (spin-independent) and  $f_2$  (spin-dependent).

At low photon energy v, one can expand them in powers of v: Electric polarizability

Spin-independent 
$$\rightarrow f_1(\nu) = -\frac{\alpha}{M} + (\alpha_E + \beta_M)\nu^2 + \mathcal{O}(\nu^4) \quad \leftarrow \text{Polarizability}$$
  
Spin-dependent  $\rightarrow f_2(\nu) = -\frac{\alpha\kappa^2}{2M^2}\nu + \gamma_0\nu^3 + \mathcal{O}(\nu^5) \quad \leftarrow \text{Spin polarizability}$   
Purely elastic reaction (internal rearrangement)

If  $Q^2 \neq 0$ , photons are virtual and have longitudinal spin components, and another spin polarizability,  $\delta_{LT}$ , appears (*LT* stands for Longitudinal-Transverse interference term).

Jefferson Lab













We do not know how to experimentally measure  $\gamma_0$  and  $\delta_{LT}$  directly, so *sum rules* are used to measure them.

Sum rule: relation (rule) between a static property of the target and an integral (sum) over a dynamical quantity

Spin polarizabilities sum rules:

Generalized forward spin polarizability:  $\gamma_{0} = \frac{4e^{2}M^{2}}{\pi Q^{6}} \int_{0}^{1} x^{2} (g_{1} - \frac{4M^{2}}{Q^{2}} x^{2}g_{2}) dx$ Longitudinal-Transverse polarizability:  $\delta_{LT} = \frac{4e^{2}M^{2}}{\pi Q^{6}} \int_{0}^{1} x^{2} (g_{1} + g_{2}) dx$ Ist spin structure function  $st = \frac{4e^{2}M^{2}}{\pi Q^{6}} \int_{0}^{1} x^{2} (g_{1} + g_{2}) dx$ Bjorken-x



## JLab studies of the spin structure of the neutron and proton at low $Q^2$

**E97-110** (neutron, using longitudinally and transversally polarized <sup>3</sup>He): Spokespeople: J.P. Chen, A.D., F. Garibaldi

**E08-027** (NH<sub>3</sub>, longitudinally and transversally polarized): Spokespeople: A. Camsonne, J.P. Chen, D. Crabb, **K. Slifer**  JLab Hall A:

E03-006 (NH<sub>3</sub>, longitudinally polarized):
Spokespeople: M. Ripani, M. Battaglieri, A.D., R. de Vita
E06-017 (ND<sub>3</sub>, longitudinally polarized):
Spokespeople: A.D., G. Dodge, M. Ripani, K. Slifer

EG4 run group JLab Hall B:



First nucleon spin structure JLab data reaching well into the  $\chi$ EFT applicability domain.









Jefferson Lab

A. Deur GDH-2025, Anaheim, Ca, 14 March 2025

Interpretation from effective theory (hadronic d.o.f)

 $\gamma_0$ : ~ difference between contributions from  $\Delta$  resonance (negative) and the nucleon's pion cloud (positive).  $Q^2 = 0$ :  $\Delta$  dominates.

Growing  $Q^2$ : spacetime resolution becomes finer  $\Rightarrow$  (extended) pion cloud contributes even less. Larger  $Q^2$ ,  $\gamma_0$  vanishes since it is a global property of the nucleon.





 $\delta_{LT}(Q^2)$ :

- $\Delta$  resonance (negative) contribution suppressed: Expect to be a robust  $\chi$ EFT prediction ( $\Delta$  d.o.f difficult to include in  $\chi$ EFT calculations);
- Higher moment: Expect to be a robust moment measurement (essentially no unmeasured low-*x* issue).



 $\delta_{LT}(Q^2)$ :

- $\Delta$  resonance (negative) contribution suppressed: Expect to be a robust  $\chi$ EFT prediction ( $\Delta$  d.o.f difficult to include in  $\chi$ EFT calculations);
- Higher moment: Expect to be a robust moment measurement (essentially no unmeasured low-*x* issue).

⇒ The disagreement between  $\delta_{LT}^n(Q^2)$  data from an earlier experiment (E94-010) and  $\chi$ EFT was particularly surprising: " $\delta_{LT}$  puzzle".







- Disagreement with  $\chi$ EFT at lower  $Q^2$ , although first moment  $\int [g_1 + g_2] dx$  agrees with Schwinger sum rule, see back-up slides.
- $\Rightarrow$  " $\delta_{LT}^n(Q^2)$  puzzle" still remains.

Jefferson Lab

#### Lots more data on spin structure functions and their moments



Jefferson Lab

Struct

#### Lots more data on spin structure functions and their moments



Jefferson Lab

A. Deur GDH-2025, Anaheim, Ca, 14 March 2025

#### Extensive test of $\chi EFT$ with spin degrees of freedoms





## Extensive test of $\chi EFT$ with spin degrees of freedoms

A: agree over range 0<Q<sup>2</sup>≤ 0.1 GeV<sup>2</sup> X: disagree over range 0<Q<sup>2</sup>≤0.1 GeV<sup>2</sup> - : No prediction available

|              |              |              | Ŵ                |                  | Ŵ            | Ŵ            | $\mathbf{\mathbf{\hat{e}}}\mathbf{\mathbf{\hat{e}}}$ | Ŵ                | <b>VV</b>       | <b>VV</b>       |
|--------------|--------------|--------------|------------------|------------------|--------------|--------------|------------------------------------------------------|------------------|-----------------|-----------------|
| Ref.         | $\Gamma_1^p$ | $\Gamma_1^n$ | $\Gamma_1^{p-n}$ | $\Gamma_1^{p+n}$ | $\gamma_0^p$ | $\gamma_0^n$ | $\gamma_0^{p-n}$                                     | $\gamma_0^{p+n}$ | $\delta^p_{LT}$ | $\delta^n_{LT}$ |
| Ji 1999      | X            | X            | Α                | X                | -            | -            | -                                                    | -                | -               | -               |
| Bernard 2002 | X            | X            | Α                | X                | Χ            | Α            | Χ                                                    | X                |                 | Χ               |
| Kao 2002     | -            | -            | -                | -                | Χ            | Χ            | Χ                                                    | X                |                 | Χ               |
| Bernard 2012 | X            | X            | ~À               | X                | Χ            | Α            | X                                                    | X                | Χ               | X               |
| Alarcon 2020 | A            | Α            | ~A               | Α                | ~A           | Χ            | X                                                    | Χ                | Α               | X               |

Improvement compared to the state of affaires of early 2000s.

Yet, mixed agreement, depending on the observable, despite  $\chi$ EFT refinements (new expansion scheme, including the  $\Delta_{1232}$  d.o.f,...) and despite data now being well into the expected validity domain of  $\chi$ EFT.

Well-controlled  $\chi$ EFT description of spin observables at large distance remains challenging.



#### Conclusion

 $\chi$ EFT, although successful in many instances, is challenged by results from dedicated (low  $Q^2$ ,  $\chi$ EFT domain) spin experiments.

To be sure, low  $Q^2$  sum rule measurements are challenging (forward angles, low-*x* extrapolation, high-*x* contamination). But the experiments were run independently with very different detectors and methods.  $\Rightarrow$  We seem to be verifying James Bjorken's statement:

"Polarization data has often been the graveyard of fashionable theories. If theorists had their way they might well ban such measurements altogether out of self protection."

This is a problem:  $\chi EFT$  is the leading approach to manage the first level of complexity of the strong force. Nuclear physics





## Back-up slides



#### First moments: Schwinger sum rule on neutron from E97-110



E97-110 (+GDH+BC sum rule+known neutron elastic form-factor) agrees with Schwinger sum rule.



JLab low  $Q^2$  experimental results  $\gamma_0(Q^2)$  and  $\delta_{LT}(Q^2)$ 



• Agree with  $\chi$ EFT state-of the  $\chi$ EFT (Alarcón et al) for relative  $Q^2$ -behavior (not absolute value).

• " $\delta_{LT}(Q^2)$  puzzle" solved?

Jefferson Lab

## $\chi EFT$ series

Domain of applicability: Q<sup>2</sup>=0 to somewhere between  $m_{\pi}^2 \approx 0.02$  GeV<sup>2</sup> and  $\Lambda_{\chi}^2 \approx 1$  GeV<sup>2</sup> (the chiral symmetry breaking scale). Depends on the order at which the series is expanded.

Main  $\chi$ PT expansion ( $\pi$ -N loops): small parameter  $m_{\pi}/\Lambda_{\chi}$ .

Including  $\Delta$  effects ( $\Delta$ -N loops): additional expansion parameter(s). Two schemes:

- $\delta_{N\Delta} \equiv M_{\Delta} M_N$  considered to be of same order as  $m_{\pi}$  (Bernard et al)
- $\delta_{N\Delta}$  considered as intermediate scale >  $m_{\pi}$  (Alarcon et al.)
- $\Rightarrow$  various  $\Delta$  contributions may arise at different order in the two schemes.

At high enough order, the scheme difference should be negligible.

Bigger difference between two state of the art calculations:

Alarcón et al. includes empirical form factors to the relevant couplings to approximate some of the high-order contributions. Accounts for the suppression of  $\gamma_0$  and  $\delta_{LT}$  at large Q<sup>2</sup>.

Bernard et al. is a purer calculation, with no such empirical addition, but does not account well for large  $Q^2$  suppression.

