APS - GHP25

March 14, 2025

Recent Phenomenological Studies Of 3D Momentum-Space Hadron Structure

Chiara Bissolotti Maria Goeppert Mayer Fellow Argonne National Laboratory PHY Division

What's new

some recent works about TMDs

Unpolarized TMDs

Flavor dependence of unpolarized quark Transverse Momentum Distributions from a global fit MAP Collaboration – DOI: 10.1007/JHEP08(2024)232 - arXiv:2405.13833

Extraction of unpolarized transverse momentum distributions from fit of Drell-Yan data at N⁴LL Valentin Moos, Ignazio Scimemi, Alexey Vladimirov, Pia Zurita – DOI: 10.1007/JHEP05(2024)036 - arXiv:2305.07473

A Neural-Network Extraction of Unpolarized Transverse-Momentum-Dependent Distributions MAP Collaboration - arXiv:2502.04166

Phenomenology of TMD parton distributions in Drell-Yan and Z0 boson production in a hadron structure oriented approach

F. Aslan, M. Boglione, J. O. Gonzalez-Hernandez, T. Rainaldi, T. Rogers and A. Simonelli arXiv: 2401.14266 - DOI: 10.1103/PhysRevD.110.074016

HSO

MAP24

What's new

some recent works about TMDs

Helicity & Transversity

 First simultaneous global QCD analysis of dihadron fragmentation functions and transversity parton distribution functions

JAM Collaboration - DOI: 10.1103/PhysRevD.109.034024 - arXiv: 2308.14857

• Exploring the three-dimensional momentum distribution of longitudinally polarized quarks in the proton

MAP Collaboration A. Bacchetta, A. Bongallino, M. Cerutti, M. Radici and L. Rossi - arXiv:2409.18078.

Extraction of the Sivers function with deep neural networks I. P. Fernando, D. Keller – DOI: 10.1103/PhysRevD.108.054007 - arXiv:2304.14328

• Global analysis of Sivers and Collins asymmetries within the TMD factorization

Chunhua Zeng, Hongxin Dong, Tianbo Liu, Peng Sun, Yuxiang Zhao – arXiv:2412.18324

ID PDFs

every TMD has the same general structure

Argonne 🤞

$$b_T \to \infty$$
 $\alpha_s(\mu_b) = \alpha \left(\frac{2e^{-\gamma_E}}{b}\right) \gg 1$ invalidates perturbative calculations $\Rightarrow b_{\max}$

 f_{NP} not directly comparable between fits, it depends on the choice of b* prescription

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Argonne 合 🔗

Drell-Yan and SIDIS

Data kinematical coverage SIDIS & Drell-Yan

darker color means higher density of data

CENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Argonne (Argonational Laboratory 10

Extractions of unpolarized TMDs

Reference	Accuracy	HERMES	COMPASS	DY	n. of points	χ²/n
PV 2017 [arXiv:1703.10157]	NLL				8059	1.5
SV 2017 [arXiv:1706.01473]	NNLL'	×	×		309	1.23
SV19 [arXiv:1912.06532]	N ³ LL(-)				1039	1.06
PV19 [arXiv:1912.07550]	N ³ LL	×	×		353	1.07
SV19 + flavor dep. [arXiv:2201.07114]	N ³ LL	×	×		309	<1.08>
MAP22 [arXiv:2206.07598]	N ³ LL(-)				2031	1.06
ART23 [arXiv:2305.07473]	N⁴LL	×	×		627	0.96
MAP24 [arXiv:2405.13833]	N ³ LL				2031	1.08

PDF DIAS M. Bury, F. Hautmann, S. Leal-Gomez, I. Scimemi, A. Vladimirov, P. Zurita - arXiv: 2201.0714 - DOI: 10.1007/JHEP10(2022)118

N

		PDI	Promasume: October 18, 2022 F bias and flavor dependence in TMD distributions				
N3LL	Marci Alexe	Marcin Bury." Francesco Hautmann, ^{1,1,4} Sergio Leal-Gomez," Ignazio Scimeni, ⁷ Alexey Vladimirow ^{7,9} and Pia Zurita'					
$H C_{f \leftarrow f'} \Gamma_{\text{cusp}}$	γ_V	$\mathcal{D}_{ ext{resum}}$	α_s running & PDF evolution				
$lpha_s^2$ $lpha_s^2$ $lpha_s^3$	α_s^2	α_s^2	NNLO				
$f_{\rm NP}^f(x,b) = \exp\left[-\frac{\left[(1-x)\lambda_1^f + x\lambda_2^f\right]b^2}{\sqrt{1+\lambda_0^fx^2b^2}}\right]$							
distinguish {u, d, ubar, dbar} and sea = {s, sbar, c, cbar, bbar, b}							
comparison of uncertainty band for unpolarize	d		11 parameters				

FHEP

PUBLISHED FOR SISSA BY D SPRINGER RECEIVED: February 21, 2022 REVISED: September 29, 2022 ACCEPTED: October 6, 2022

V. Moos, I. Scimemi, A. Vladimirov, P. Zurita DOI: 10.1007/JHEP05(2024)036 - arXiv: 2305.07473

Extraction of unpolarized transverse momentum distributions from the fit of Drell-Yan data at N⁴LL

Valentin Moos,^a Ignazio Scimemi,^b Alexey Vladimirov,^b Pia Zurita^{a,b}

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

NN TMDs

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. MAP Collaboration arXiv:2502.04166

extraction of $f_1(x, k_T)$ from DY data

10 nodes in a single hidden layer

DOI: 10.1103/PhysRevLett.132.231901

Argonne _____ 16

Hadron Structure Oriented (HSO) proposed new approach to TMD phenomenology

within 'the usual' TMD factorization

DOI: 10.1103/PhysRevD.110.074016

proof of principle

 10^{1}

Sivers function with Deep Neural Networks

I. P. Fernando, D. Keller DOI: <u>10.1103/PhysRevD.108.054007</u> <u>arXiv:2304.14328</u>

$$\rho_N^q(x, k_x, k_y; Q^2) = f_1^q(x, k_T^2, Q^2) - \frac{k_x}{M} f_{1T}^{\perp q}(x, k_T^2, Q^2)$$

Ť.

in a nucleon polarized in the +y direction,

the distribution of guarks can be distorted in the x direction

good agreement between the extractions

JAM Collaboration - <u>arXiv: 2308.14857</u> DOI: 10.1103/PhysRevD.109.034024

first simultaneous global analysis of the $\pi^+\pi^-$ DiFFs and transversity PDFs

JAMDIFF

 e^+e^- , SIDIS, and pp data

Argonne National Laboratory is a U.S. Department of Energy laboratory U.S. Department of Energy laboratory U.S. Department of Energy laboratory

 $n_1 \, {\rm quantifies}$ the degree of transverse polarization of quarks within a transversely polarized nucleon.

LQCD data reduces uncertainties in the large-x region

Argonne (19

Helicity Iongitudinally polarized quarks

A. Bacchetta, A. Bongallino, M. Cerutti, M. Radici and L. Rossi MAP Collaboration - <u>arXiv:2409.18078</u>

$$A_{1}(x, z, Q, |\mathbf{P}_{hT}|) = \frac{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{g}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{f}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}$$

TMD phenomenology **Status and Future Directions**

we are entering the precision era:

great progress in extracting polarized

... and many others

Extraction of the Sivers function from SIDIS. Drell-Yan. and W / Z boson production data with TMD evolution M. Bury, A. Prokudin, A. Vladimirov -DOI: 10.1007/JHEP05(2021)151, arXiv:2103.03270

Logarithmic accuracy

$$\left(\frac{d\sigma}{dq_T}\right) \propto H(Q,\mu) \int \frac{d^2 \mathbf{b}}{4\pi} e^{i\mathbf{b}\cdot\mathbf{q}_T} x_1 f_1^q(x_1,\mathbf{b};\mu,\zeta_1) x_2 f_1^{\bar{q}}(x_2,\mathbf{b};\mu,\zeta_2)$$

perturbative expansion in
$$lpha_{_S}(\mu)$$

$$\times \exp\left\{K(\mu_0)\ln\frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} + \int_{\mu_0}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu'))\ln\frac{\sqrt{\zeta}}{\mu'}\right]\right\}$$

 $\times f_{\rm NP}(x,b;\zeta)$

 $f_1^q(x,b;\mu,\zeta) = \sum_j \left(C_{q/j} \otimes f^j \right) (x,b_*;\mu_b)$

Accuracy	H and $C_{q/j}$	K and γ_F	γ_K	PDF and α_{s} evol.
LL	0	-	1	-
NLL	0	1	2	LO
NLĽ	1	1	2	NLO
NNLL	1	2	3	NLO
NNLĽ	2	2	3	NNLO
N ³ LL	2	3	4	NNLO
N ³ LĽ	3	3	4	N ³ LO

MAP24 b*-prescription with **b_min**

 π^+

 K^+

11

d

 \bar{u}

global fit: DY & SIDIS

 $f_{\rm NP}$ same as in MAP22

96 parameters

1 + (5 flavors × 10 parameters) for TMD PDFs, and 45 (5 channels × 9 parameters) for TMD FFs.

Global analysis of Sivers and Collins asymmetries

Chunhua Zeng, Hongxin Dong, Tianbo Liu, Peng Sun, Yuxiang Zhao (Transverse Nucleon Tomography Collaboration) arXiv:2412.18324

$$H_1^{\perp(1)}(z) = \int_0^{p_T^{\text{cut}}} d^2 \boldsymbol{p}_T \frac{p_T^2}{2z^2 M_h^2} H_1^{\perp}(z, p_T),$$

cuts because of TMD formalism

$$h_1(x) = \int_0^{k_T^{\text{curr}}} d^2 k_T h_1(x, k_T).$$

1 011

...a selection of some more works

on 3D hadron structure

Extraction of the Sivers function from SIDIS, Drell-Yan, and W / Z boson production data with TMD evolution

M. Bury, A. Prokudin, A. Vladimirov – DOI: 10.1007/JHEP05(2021)151, arXiv:2103.03270

Global analysis of polarized DIS and SIDIS data with improved small-x helicity evolution

D. Adamiak, N. Baldonado, Y. V. Kovchegov, W. Melnitchouk, D. Pitonyak, N. Sato, M. D. Sievert, A. Tarasov, Y. Tawabutr (JAM Collaboration) Phys. Rev. D 108, 114007 (2023) - arXiv; 2308.07461

Tomography of pions and protons via TMD distributions

P. C. Barry, L. Gamberg, W. Melnitchouk, E. Moffat, D. Pitonyak, A. Prokudin, N. Sato (JAM Collaboration) - Phys. Rev. D 108, L091504 (2023) - arXiv: 2302.01192

Transversity distributions and tensor charges of the nucleon: extraction from dihadron production and their universal

nature

C. Cocuzza, A. Metz, D. Pitonyak, A. Prokudin, N. Sato, R. Seidl Phys. Rev. Lett. 132, 091901 (2024), arXiv:2306.12998

E

Transverse Momentum Moments

Phys.Rev.D 110 (2024), arXiv: 2402.01836

Transverse momentum distributions at large x

O. del Rio, A. Prokudin, I. Scimemi, A. Vladimirov - arXiv: 2501.17274

