Hadron Spectroscopy with GLUE

Sean Dobbs Florida State U.

11th Workshop of the APS Topical Group on Hadronic Physics (GHP2025) March 14, 2025

- Quantum Chromodynamics (QCD)
 - Degrees of freedom: quarks and gluons
- Recent progress in studying QCD through spectrum of bound states
 - New high-intensity experiments
 - More rigorous theoretical tools
- Open questions:
 - What is the origin of confinement?

100

80

60

40

Events / 0.01 GeV/c²

- Quantum Chromodynamics (QCD)
 - Degrees of freedom: quarks and gluons
- Recent progress in studying QCD through spectrum of bound states
 - New high-intensity experiments
 - More rigorous theoretical tools
- Open questions:
 - What is the origin of confinement?
 - Which color-singlet states exist in nature?

Events / 0.01 GeV/c²

- Quantum Chromodynamics (QCD)
 - Degrees of freedom: quarks and gluons
- Recent progress in studying QCD through spectrum of bound states
 - New high-intensity experiments
 - More rigorous theoretical tools
- Open questions:
 - What is the origin of confinement?
 - Which color-singlet states exist in nature?

- Quantum Chromodynamics (QCD)
 - Degrees of freedom: quarks and gluons
- Recent progress in studying QCD through spectrum of bound states
 - New high-intensity experiments
 - More rigorous theoretical tools
- Open questions:
 - What is the origin of confinement?

 What are the bound state degrees of freedom? Do gluons contribute?

- Quantum Chromodynamics (QCD)
 - Degrees of freedom: quarks and gluons
- Recent progress in studying QCD through spectrum of bound states
 - New high-intensity experiments
 - More rigorous theoretical tools
- Open questions:

Hybrid Mesons

HadSpec: PRD 88, 094505 (2013)

- Long history of search for "hybrid" mesons with gluonic excitations
- Best evidence is for $\pi_1(1600)$ in COMPASS pion-production data
- Recent evidence for $\eta_1^{(\prime)}$ from BES-III in J/ $\psi \rightarrow \gamma \eta \eta'$
- Need to confirm π_1 and η_1 and establish the full (normal and exotic) light quark hybrid spectrum

Hybrid Mesons

 Long history of search for "hybrid" mesons with gluonic excitations

- Best evidence is for $\pi_1(1600)$ in COMPASS pion-production data
- Recent evidence for η₁^(') from BES-III in J/ψ→γηη[']
- Need to confirm π₁ and η₁ and establish the full (normal and exotic) light quark hybrid spectrum

COMPASS: PLB 740, 303 (2015) & JPAC: PRL 122, 042002 (2019)

a2'(1700)

 $\pi^- p \rightarrow \eta^{(\prime)} \pi^- p$

HadSpec: PRD 88, 094505 (2013)

Hybrid Mesons

S. Dobbs — GHP2025 — March 14, 2025 — Hadron Spectroscopy with GlueX

Hadron Spectroscopy and Photoproduction

 Photoproduction is an essential process to study normal hadrons and to search for exotic hadrons

- Can produce mesons of any J^{PC} through VMD
- Photon polarization provides constraints on production processes
- Little data existed for final states
 with neutral particles
- Idea: confirm and extend our knowledge of exotic hadrons in a new process

The GlueX Experiment

Detailed understanding of light-quark meson spectrum requires ٠ amplitude analysis. Beam Asymmetry Σ

$$P_{\sigma} = \frac{\sigma^{N} - \sigma^{U}}{\sigma^{N} + \sigma^{U}}$$

Natural $P = (-1)^J$ and Unnatural $P = -(-1)^J$ exchanges

(π⁰/η)p: Phys. Rev. C95, 042201 (2017) (n/n')p: Phys. Rev. C100, 052201(R) (2019) K+Σ⁰: Phys. Rev. C101, 065206 (2020) **π**-Δ++: Phys. Rev. C103, 0 21) K+Λ(1520): Phys. Rev. C10! (2022)Updates on the way...

SDMEs:

 $\rho(770)$: Phys. Rev. C108, 055204 (2023) $\omega(782)$: in progress $\phi(1020)$: paper under Collaboration review

 $\pi^{-}\Delta^{++}$: Phys. Lett. B863, 139368 (2025) $K^+\Lambda(1520)$: Phys. Rev. C105, 035201 (2022) More coming...

 Detailed understanding of light-quark meson spectrum requires amplitude analysis.

See talk at Fri. 2:25 pm on $\Lambda(1405)$ and $\Lambda(1520)$ at GlueX

 Detailed understanding of light-quark meson spectrum requires amplitude analysis.

ηπ Amplitude Analysis at GlueX

 $\pi\eta$ / $\pi\eta'$ "golden channels" for π_1 search: small b.f. but experimentally clean

- Odd L $\pi\eta^{(\prime)} \rightarrow \text{exotic } J^{\text{PC}}$
- Study known a₀/a₂ in πη
- Apply analysis to $\pi \eta'$ with stronger π_1
- Can study several channels
- $\gamma p \to \eta \pi^0 p \qquad \gamma p \to \eta \pi^- \Delta^{++}$
- Control understanding of production
- with multiple η decays
 - $\eta \to \gamma \gamma$ $\eta \to \pi^+ \pi^- \pi^0$
 - Control understanding of acceptance and backgrounds
- Use polarization to control acceptance, help separate amplitudes
- Fits with different levels of model-dependence

GlueX-I Data

 $0.1 < -t < 0.3 \text{ GeV}^2$

$\gamma p \rightarrow a_2(1320)p$ Cross Section

- First separation of $\gamma p \rightarrow a_2(1320)p$ cross section into reflectivity components
- Cross sections agree with with JPAC prediction
 - Natural exchange dominant, unnatural exchange constant over -t
 - Can also extract amplitudes for individual waves
- Informs amplitude fits for exotic waves

GlueX: submitted to Phys. Rev.

Upper limits on $\pi_1(1600)$ contributions to $\eta^{(')}\pi$

- Both $a_2(1320)$ and $\pi_1(1600)$ decay to $\eta^{(\prime)}\pi$ and $\omega\pi\pi$
- Used measurements of $dM/d\sigma$ for $\omega \pi \pi$ to set upper limit for $\pi_1(1600)$ contribution and project to $\eta^{(\prime)}\pi$
- $\pi_1(1600)$ could be dominant contribution to $\eta' \pi^0$ $\gamma p \rightarrow \eta \pi^0 p$

Events/20 MeV/c²

9000

8000

7000

6000

5000

4000

3000

2000

1000

GlueX: Phys. Rev. Lett. 133, 261903 (2024)

1.0

HadSpec: PRD 103, 054502 (2021)

2.0

1.5

First look at $\gamma p \rightarrow \eta' \pi^- \Delta^{++}$

- Study of $\eta' \pi$ mass vs. $\cos \theta_{\rm GJ}$ illustrates population of different partial waves
- Clear forward/backward asymmetry, similar to COMPASS measurement
- Steady progress in amplitude and moment analysis

COMPASS: PLB 740, 303 (2015)

Excited Vectors and Photoproduction

- Vector mesons have same QNs as photons, should be strongly excited in photoproduction
- Hybrid mesons with vector QNs are predicted

Excited Vectors in $K_S K_L$

FOCUS: PLB 545, 50 (2002)

γp

 K^+K^-p

200

150

100

- Study of $\gamma p \rightarrow K_S K_L p$ populates $J^{PC} = \text{odd}^{--} \text{ mesons: } 1^{--}, 3^{--}, \dots$
- Two peaks fit well by sum of two Breit-Wigners
- Many candidate vectors in this mass region •
- Plan to study *t*-dependence, PWA, ... ullet

0.125

0.100

0.075 0.050 0.050

Charmonium Photoproduction Near Threshold

- Production of cc near threshold probes the distribution of gluons in the proton and the nature of the proton mass
- Can also look for s-channel production of resonant states

See talk by S. Joosten, Sat. 8:30 am

J/ψ Photoproduction at GlueX: Mass Spectrum

- Reconstruct $p \gamma \rightarrow p + J/\psi, J/\psi \rightarrow e^+e^-$
- · Calculate J/ ψ cross sections normalized by non-resonant e+e-
- Full kinematic coverage

Latest GlueX-I $J/\psi \rightarrow e^+e^-$ Photoproduction Results

- Full GlueX-I data yields $2270 \pm 58 \text{ J/}\psi$'s
- Overall normalization uncertainty ~20%
- "Dip" above 9 GeV has 2.6σ (1.3σ) local (global) significance
- No evidence of narrow P_c production, tension with molecular interpretation?
- Differential cross sections generally consistent with expectations of gluonic exchange, except near threshold

Threshold Effects?

X_{c1}(1³P₁) Photoproduction at GlueX

- $\chi_{c1}(1^{++})$ photoproduction: probe of different parity C=+
- Test of "Odderon-like" couplings and fixed-spin exchange models
- Look for $\gamma p \to \chi_{cJ} p \to (\gamma J/\psi) p \to (\gamma e^+ e^-) p$

JPAC, PRD 108, 054018 (2023)

X_{c1}(1³P₁) Photoproduction at GlueX

Summary and Prospects

- Photoproduction is an interesting process to look for exotic hadrons crucial to confirm their production in new processes
- GlueX has collected the world's largest photoproduction dataset
 - Collaboration with theory is crucial for understanding
- First amplitude analyses of $\eta\pi$ and $\eta'\pi$ aim to identify the π_1 in photoproduction
- Analysis of excited vectors promises to give new insight to their spectrum, first step towards looking for non-exotic QN hybrid mesons at GlueX
- First detailed studies of J/ψ photoproduction near threshold
- GlueX-II run in progress, planned to end during 2026
 - Other approved experimental programs includes JLab Eta Factory, spectroscopy with intense K_L beam (≈10⁴/s), elliptically polarized photons, polarized target, higher-intensity GlueX-III...

GlueX acknowledges the support of several funding agencies and computing facilities: <u>http://gluex.org/thanks</u>

Backup Slides

The GlueX Experiment: Photon Beam

- Photon beam generated via coherent bremsstrahlung off thin diamond radiator
- Photon energies tagged by scattered electrons
- Energy measurement precision < 25 MeV
- Photon linear polarization $P_{\gamma} \sim 40\%$ in peak
- Intensity of ~1–5 \times 10⁷ g/s in peak

Light Meson Spectrum from Lattice QCD

J^{PC}= 0⁻⁺ 1⁻⁻ 2⁻⁻ 3⁻⁻ 4⁻⁻ 2⁻⁺ 4⁻⁺

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

Light Meson Spectrum from Lattice QCD

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

Light Meson Spectrum from Lattice QCD

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

ηπ Amplitude Analysis at GlueX

- Clear signals at $a_0(980)$ and $a_2(1320)$ masses
- Different angular dependence \rightarrow different dominant production wave
 - D_1 for $\eta \pi^-$, D_2 for $\eta \pi^0$

 $0.1 < -t < 0.3 \text{ GeV}^2$

ηπ Amplitude Analysis at GlueX

Clear signals at $a_0(980)$ and $a_2(1320)$ masses

Peaks have different t-dependence

 $0.1 < -t < 0.3 \text{ GeV}^2$

$$0.3 < -t < 0.6 \text{ GeV}^2$$

 $0.6 < -t < 1.0 \text{ GeV}^2$

Searching For Hybrid Mesons

- Mesons grouped into nonets of similar J^{PC}
 - Must establish quantum numbers and pole parameters through amplitude analysis
- Meson QNs
 - Allowed: 0-+, 0++, 1--, 1+-, 2++, 2-+,...
 - Forbidden: 0--, 0+-, 1-+, 2+-, ...
- Hybrid Meson QNs
 - 0⁻⁺, 0⁺⁻, 1⁻⁻, 1⁻⁺, 2⁻⁺, 2⁺⁻, ...
- Hybrid mesons can be found with normal and exotic quantum numbers

 $J=L+S P=(-1)^{L+1} C=(-1)^{L+S}$

"Normal" Meson

"Hybrid" Meson

Hybrid–Meson mass splitting ~ 1.0 – 1.5 GeV

Open Charm Production Near Threshold

- Hadron ($c\bar{c}$) molecules like to decay to open-charm final states, can we see them at GlueX? (c.f. LHCb)
 - Also will help with J/ψ interpretation
- Open charm photoproduction cross section measured at SLAC for $E_{\chi} \approx 20 \text{ GeV}$ based on ~50 events
 - Roughly 5-10 larger than J/ψ cross section
 - Exclusive reconstruction of e.g. $D^{(*)0}$ Λ_{c}^{+} is a factor \approx 25 lower due to b.f.s
- Expect with GlueX-I can set ULs of $\mathcal{O}(10 \text{ nb})$
- Full GlueX-II statistics with improved π/K separation will give enhanced sensitivity

Ev

PRL 51, 156 (1983)

Charmonium Photoproduction Near Threshold

- Current max CEBAF energy allows study of bound $c\bar{c},\,P_c$ states
- 17 GeV e⁻ gives access to most exotic candidates
- 22 GeV e- gives good phasespace, linear polarization

GlueX-I J/ψ Differential Cross Sections

 Differential cross sections generally consistent with expectations of gluonic exchange, except near threshold

GlueX-I J/ψ Differential Cross Sections

- GlueX and $J/\psi 007$ results agree well within uncertainties
- Scale uncertainties:
 - 20% for GlueX
 - 4% for $J/\psi 007$
- Enhancement seen at large *t* near threshold

GlueX-I J/ψ Differential Cross Sections

- JPAC fit to GlueX and $J/\psi 007$ data
 - Up to 3 s-channel partial waves
 - Effective range expansion
 - K-matrix & unitarity
- Describes all observed features well
- Factorization violations > 25% at 90% CL
- More data needed!

Comparing $J/\psi \rightarrow e^+e^-$ and $J/\psi \rightarrow \mu^+\mu^-$

- To confirm the structures observed in the cross section using $J/\psi \rightarrow e^+e^-$ events, we can also use $J/\psi \rightarrow \mu^+\mu^-$ events
- Detailed study of calorimeter and trigger response in progress
- Expect new results from CLAS12, Hall-C. Eventually: GlueX-III, SOLID

Projections for Future JLab Upgrades

Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab, EPJA 60, 9 (2024)

 Projections for GlueX measurements with upgraded CEBAF allow for precision study of charmonium and charmonium-like states with linearly polarized photons

Search for the Y(2175)

- Can search for the Y(2175) / ϕ (2170)
 - $s\bar{s}$ partner of the Y(4230)?

Search for the Y(2175)

- No evidence with PDG Y(2175) parameters ($\sigma < 500$ pb)
- Evidence of structures at M \sim 1.8 and \sim 2.24 GeV

$\Xi^{-}(1320)$ Photoproduction

Detailed $\Xi^{-}(1320)$ cross section measurements provide baseline for Ξ program, insight into Y* contributions

S. Dobbs — GHP2025 — March 14, 2025 — Hadron Spectroscopy with GlueX

•

$\Xi^{-}(1320)$ Photoproduction

Detailed $\Xi^{-}(1320)$ cross section measurements provide baseline for Ξ program, insight into Y* contributions

•

$\Xi^{-}(1530)$ Photoproduction

- Ground state decuplet $\Xi(1530)$ measured with 50% GlueX-I data
- Cross section shows no significant energy dependence

 $\gamma p \to K^+ K^+ \Xi (1530)^-, \quad \Xi (1530)^- \to \Xi (1320)^- \pi^0$

Hunting for Excited Cascades

Cross sections for $\omega\pi\pi$ **in GlueX**

• Measured $\omega \pi \pi$ photoproduction with $0.1 < -t < 0.5 \text{ GeV}^2$

Cross sections for $\omega\pi\pi$ **in GlueX**

• Measured $\omega \pi \pi$ photoproduction with $0.1 < -t < 0.5 \text{ GeV}^2$

Excited Vectors in $K_S K_L$

- Study of $\gamma p \rightarrow K_S K_L p$ gives insight to odd⁻⁻ mesons: 1⁻⁻, 3⁻⁻, ...
- Clean $\phi(1020)$ signal seen with GlueX-I data, study SDMEs, cross sections,
- Two clear enhancements at larger mass

Excited Vectors and Photoproduction

- Vector mesons have same QNs as photons, should be strongly excited in photoproduction
- Need consistent understanding of spectra in photoproduction and e+eannihilation

Polarized Photoproduction @ GlueX

- SDME fits use same fitting framework as amplitude analyses
- GlueX data provides high statistical precision
- General conclusions:
 - Neutral meson production proceeds dominantly through natural exchange
 - Charged mesons see contribution from pion exchange at low -t

