Time-like Compton Scattering in Hall C

V.Tadevosyan For the Hall C TCS collaboration

NPS Collaboration Meeting, 07/17/2024

TCS with **polarized** target

- Physics case and motivation
- Experimental setup
- Simulations
- Status

TCS with **un-polarized** target

- Physics case and motivation
- Experimental setup
- Simulations
- Status

Courtesy M.Boer

Kinematic region out of pion resonance production

Example estimates of accuracies on the model extraction of CFFs. TCS with trans. pol. Target:

- Allows for extraction of Im(E) (unique to this proposal)
- Allows for extraction of Im(H) to good accuracy (universality tests)

$$\gamma + p \rightarrow \gamma^* (e^+ + e^-) + p'$$

- Detect e⁺, e⁻, recoil p in coincidence
- CPS bremsstrahlung photon beam
- Jlab-UVA NH₃ target, transversely polarized
- Detectors arranged in 4 quarters, oriented to target
- Multiple GEMs for e⁺, e⁻, p tracking
- Hodoscopes for recoil proton detection/PID
- *PbWO*₄ calorimeters for e⁺, e⁻, p detection/PID

TCS w/ polarized target: Experimental apparatus

Compact Photon Source (CPS):

- Combines polarized photon source, collimator and beam dump;
- High intensity photon beam (1.5x10¹² γ/s in [5.5 GeV, 11 GeV] range from 2.5 μA primary e- beam on 10% X₀ Cu radiator , ~1 mm spot size at 2 m from radiator).

<u>Target</u>:

- Material: ¹⁵NH₃ in LHe at 1°K, packing fraction 0.6.
- Polarization: 5 T transverse magnetic field; DNP by 140 GHz, 20 W RF field; NMR monitored.
- Acceptance: ±25° horizontally, ±23° vertically.

GEM trackers:

- Coordinate reconstruction accuracy ~80 μm
- Background rate tolerance up to 10⁶ Hz/mm²
- Minimum material thickness along particle pass, big size manufacturing
- Use at Jlab: SBS, SoLID DDVCS, Prad

Calorimeters, clones of the NPS calorimeter:

- $2x2x20 \text{ cm}^2 \text{ PBWO}_4 \text{ scin. crystals, arranged in carbon fiber/}\mu\text{-metal mesh}$
- Expected energy resolution **2.5%/VE + 1%**
- Expected coordinate resolution ~3 mm at 1 GeV
- Modules arranged in 4 assemblies of 23x23 matrix
- Total number of modules **2116**.

TCS w/ polarized target: Trigger concept

Establish thresholds on E_{DEP}(e+), E_{DEP}(e-),
 E_{DEP}(e+)+E_{DEP}(e-) to control background

Exclude high background region close to beam pipe

Beam background rate and TCS triple coin. detection efficiency vs cut on polar angle Θ.

TCS w/ polarized target: Reconstructed versus True Quantities

Note: physical and beam backgrounds are not taken into account in the reconstruction.

The proposal C-12-18-005 was conditionally approved by PAC 46 and PAC48 with C2 rating, was deferred by PAC 50:

Summary: The PAC acknowledges that the physics case of the proposal is strong and nicely complements the extensive program of GPD-related measurements at JLab. However, given the difficulty of the measurement, the PAC feels that a deeper review of the experimental issues raised above is required, and that the collaboration needs to increase their workforce focusing on the challenging technical issues of this proposal. Given the extent of the additional work needed, the PAC recommends a deferral of this proposal, to enable sufficient time for addressing the technical issues.

The physics program is solid, issues with experimental setup and feasibility of measurements.

Discussed PAC identified issues and pass forward with E.Aschenauer:

- Prioritized tasks (Physics background calculations first)
- Identified pitfalls (Rad. Damage of hodo-s, SiPM sensitivity to neutrons...)
- Discussed possible modifications of detector package (GEM based TRD)
- Identified experts to contact

...

TCS Program

Observables	GPD	Target	Beam	Experiments
Unpol. cross sections vs ϕ	$\mathfrak{R}(H), \mathfrak{I}(H)$	Unpolarized (Lh2)	unpolarized	ClAS12 , SoLID (future), Unpol. TCS in Hall C
Cross sections vs ϕ	$\mathfrak{T}(H),\mathfrak{T}(ilde{H})$	Unpolarized (Lh2)	Circularly polarized	CIAS12 , SoLID (future), Unpol. TCS in Hall C
Cross sections vs ϕ & ψ	$\Re(H), D-term$	Unpolarized (Lh2)	Linearly polarized	Possible with GlueX
Cross sections vs ϕ	$\Im(ilde{H})$	Longitudinally polarized target	unpolarized	Possible with CLAS12
Cross section vs ϕ & ϕ_S	$\mathfrak{T}(E),\mathfrak{T}(ilde{H})$	Transversely polarized target	unpolarized	Pol. TCS in Hall C Work in progress
Double spin asym. vs ϕ	$\mathfrak{R}(CFF)$	log. Polarized	Circularly polarized	Extremely interesting bu very difficult
Double spin asym. vs ϕ & ϕ_S	$\mathfrak{R}(CFF)$	trans. Polarized	Circularly polarized	Extremely interesting bu very difficult
Double spin asym. vs ϕ & $~ arphi$	$\mathfrak{T}(CFFs)$	log. Polarized	Longitudinally polarized	Not useful too complex and not enough info
Double spin asym. vs ϕ_S & $~\psi$	$\mathfrak{T}(CFFs)$	trans. Polarized	Longitudinally polarized	Not useful too complex and not enough info
Biswas, D. (VT)		TCS @ HaLL C	Hall C Winter C	ollab. Meet. 2024

With unpol., circularly pol. γ incident, TCS unpolarized is sensitive to Re(H) and Im(H) GPD-s.

07/17/2024

 $\gamma + p \rightarrow \gamma^* (e^+ + e^-) + p'$

- Detect e⁺, e⁻, recoil p in coincidence
- Circularly polarized CPS brem. photon beam
- Jlab 15 cm LH2 cryogenic target
- Analyzing ~2Tm **SBS** magnet (31"x48" bore)

- Detectors arranged in 4 quarters
- Multiple GEMs for e^+ , e^- , p tracking
- Hodoscopes for recoil proton detection/PID
- *PbWO*⁴ calorimeters for e⁺, e⁻, p detection/PID

Key differences between polarized and unpolarized setups:

15 cm LN2 target versus 3cm NH₃ polarized target, no polarizing magnetic field.

- Analyzing magnet:
 - ~2 Tm field integral
 - 31" wide, 48" high, 48" deep bore
 - Allows separation of e-, e+ tracks at detectors
 - Momenta from tracking useful for PID with calorimeters and hodoscopes
 - Allows vertex reconstruction at target

A setup from Geant4 simulations used for acceptance and optimization studies.

TCS w/ un-polarized target: Simulations

Distributions of TCS e- (left) and recoil proton (right) track coordinates at the face of plane calorimeter. The rectangle encompasses tracks within aperture of the SBS magnet. The SBS magnet is not exited.

07/17/2024

NPS Collaboration Meeting

Done:

- A Geant 4 code is developed to simulate setup
- TCS events are sampled by the DEEPGen generator
- Responses of detectors to the TCS events are simulated
- Rates of e+e- coincidence and triple coincidence events are estimated for a configuration of setup

To be done:

...

- Optimize the setup for max. triple coincidence triple rate (magnets' field and position, detector coverage and positions)
- Estimate TCS trigger rates and triple coincidences
- Generate events of principal physics backgrounds and estimate their rates in the setup
- Estimate background rates from beam interaction with matter

Thank you for your attention!

Backup slides

Experimental apparatus, CPS

Compact Photon Source under development in Hall C at JLab:

- Combines polarized photon source, collimator and beam dump;
- High intensity directed brem. photon beam (1.5x10¹² γ/s in [5.5 GeV, 11 GeV] range from 2.5 μA primary e- beam on 10% X₀ Cu radiator , ~1 mm spot size at 2 m from radiator);
- 3.2 T warm magnet to bend incoming electrons to local beam dump;
- Highly shielded design (W/Cu alloy) to minimize prompt and residual radiation.

D.Day et al., NIMA 957 (2020) 163429

- Target material: ¹⁵NH₃, in LHe **at 1°K**.
- Packing fraction 0.6.
- Magnetic field generated by superconducting Helmhotz coils.
- **DNP polarization** by 140 GHz, 20 W RF field.
- Polarization monitored via NMR.
- Depolarization mitigated by combined rotation (~1 Hz) around horizontal axis and vertical up/down movement (~10 mm).

New polarizing magnet arrived in September 2021!

- Drop-in replacement for old Jlab-UVA target
- 5 T magnetic field, 100 ppm uniformity
- ±25° horizontal opening angle in transverse filed configuration (increase from ±18° --> increase of TCS acceptance, help with background rates.)

Horizontal field orientation

GEM trackers:

- Coordinate reconstruction accuracy ~80 μm
- Background rate tolerance up to 10⁶ Hz/mm²
- Minimum material thickness along particle pass
- Big size manufacturing

Use at Jlab: SBS, SoLID DDVCS, Prad

Hodoscopes:

- To provide dE/dX signal from low momentum recoil protons
- 2x2x5 cm³ scintillators arranged in "Fly's eye" hodoscopic construction

Calorimeters, clones of the NPS calorimeter:

- 2x2x20 cm² PBWO₄ scin. crystals, optically isolated
- Modules arranged in a mesh of carbon fiber/µ-metal
- Expected energy resolution 2.5%/VE + 1%
- Expected coordinate resolution ~3 mm at 1 GeV
- Modules arranged in 4 "fly's eye" assemblies of 23x23 matrix
 Total number of modules needed 2116.

SBS BT GEM prototype (K.Gnanvo et al., NIMA 782 (2015) 77-86)

Assembling of NPS calorimeter (June 2022)

Recoil proton ID

Low energy protons, E_{KIN} from ~30 MeV to 450 MeV Cuts to select good protons:

- $E_{HODO} > 15 MeV$
- 90 $MeV < E_{HODO} + E_{CALO} < 450 MeV$
- $2800 MeV^2 < ExE < 4200 MeV^2$,

where $ExE = (E_{HODO} + E_{CALO} - 12) \times (E_{HODO} - 7)$

5T target field localized at target cell

Field behind scattering chamber too weak to distinguish pos. and neg. tracks.

Alternative: use reconstructed incident photon mass:

- Reconstruct recoil proton;
- Reconstruct leptons twice, by assigning (+,-) and (-,+) charges;
- Combine with reconstructed proton to get 2 masses, choose smaller one.

Anticipated results: target asymmetries

- Shows strong dependence on angular momenta
- 8 bins: fit of 2x2 orthogonal bins (4 independent ones) for CFFs global fits

NPS Collaboration Meeting

400 MeV/c ($E_{KIN} = 81 MeV$) proton passed from target to 1-st layer GEM.

- Hit spot size $\sigma \sim 1.5 cm$
- Fraction of hits within *R* < 4.5*cm* -- 94.5%

Cuts to select good protons:

- $E_{HODO} > 15 MeV$
- $90 MeV < E_{HODO} + E_{CALO} < 450 MeV$
- $2800 MeV^2 < ExE < 4200 MeV^2$,

$$ExE = (E_{HODO} + E_{CALO} - 12) \times (E_{HODO} - 7)$$

Recoil proton ID

Residuals of reconstructed quantities

