

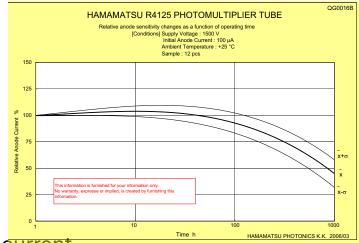
NPS Calorimeter Refurbishment Discussion points, not recommendations

Charles Hyde

17 July 2024

NPS Collaboration Meeting

Calorimeter Status


- At end of experiment, Calorimeter was working very well!
 - No sign of PMT failure
 - Crystal darkening manageable
- Calorimeter "mothballed" in EFB
 - Calorimeter intact with all FEE
- Next NPS experiment (likely?)
 - WACS (unpolarized) +¿E12-14-118 DVCS?
 - Put the calorimeter back on the platform, recable, and take data
 - No refurbishment necessary?

Some issues of concern

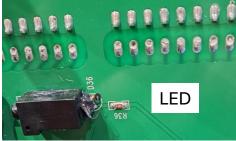
- PMT lifetime
- Temperature sensor interface
- HV distribution boards
- Mechanical access to Crystal assemblies
- Ease of longitudinal motion (on platform cable bundle)

HAMAMATSU R4125 PMT Lifetime

- Fermilab study:
 - <u>https://lss.fnal.gov/archive/1997/pub/</u>
 <u>Pub-97-092.pdf</u>, or NIM A v406 (1998) 103–116
 - 12 PMTs tested, illumination level: 100 μ A anode current
 - Gain stable up to anode charge of 100 Coulomb.
 - Gain decrease to 50% after anode charge of 1000 Coulomb.
- NPS, Crystals closest to Calorimeter (very rough estimate)
 - (8 months) ⊗ (60%) ⊗ (10 µA) ≈ 115 Coul
 - Get exact recorded anode charge.
- Probably could run another 100 PAC days without catastrophic failure
 - Ran 3 generations of DVCS experiments in Hall A and only replaced 16 (out of 200) PMTs

PMT options

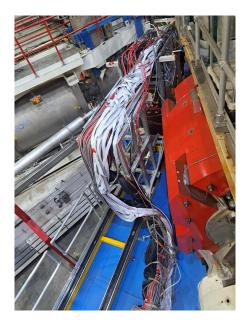
- 1) Test ~10 NPS PMTs to > 100 Coul
- 2) Buy ~100 spare PMTs (3 columns)
- 3) Do nothing.
- **Other PMT issues/options**
- Rebuild bases with improved low-voltage filtering
 - Or just leave alone, everything is fine with LV regulators removed


Temperature Sensors

- Crystal temperature stability monitoring
 - Gain variation –2% / °C
- ~most of front face sensors failed
 - Sensors are fine, interface-card between sensors and Keysight has active electronics—NOT rad hard. Solutions:
 - Long lead wires to move interface to more shielded location: Noise? Calibration Drift?
 - Find a Rad-Hard interface (CERN?)
 - Buy lots of spares

Distribution Boards, Patch cables to PMTs

- HV Issues
 - HV connections shorted (Boards too thin...)
 - All HV connections bypassed
 - Many of isolation capacitors fell off, trapped in cover
- Patch cables had many failures (displacement of central pin on SMC connectors).
 - All is well after ~first month of operations
- LED/Fiber system
 - Delicate, (only) 70% of connections operational
- Redesign/Rebuilt signal, HV, LV, LED connection and mechanics or leave well-enough alone?



Mechanics

- Distribution boards, PMT+Crystal repair/replacement
- Cable bundle
 - Required crane to move Calo forward/back. Scheduling challenges.
- Build a vertical axis cable tray?

Hall C Pivot

No Conclusions, Just Questions

- •What is Truly Necessary?
 - •Who Will Do the Work?

My original list

1. Crystals

- a. Bleach with blue lights?
- b. Measure transparency?
- 2. PMTs
 - a. Test ~10 at high anode current (e.g. 10 μA until death)
 - b. Replace?
- 3. PMT Base Redesign?
 - a. No LV regulators, replace with LC filter.
 - b. Find certified rad-hard components for pre-amps
 - c. Replace signal and HV connectors with pigtails?
 - d. "True" DC monitoring?
 - e. Heating system for Base when HV off, to stabilize calo temperature.
- 4. Calo-mounted distribution boards
 - a. Redesign/replace for proper HV isolation
 i. Replace boards with guided cable bundles?
 - b. Revise connections to PMT bases
 - c. Any mechanical suggestions (expand lateral movement beyond size of Calo)
 - d. Low Voltage distribution
 - e. HV connectors?

- 5. Optical Fibers
 - a. LED system / driver
 - b. Coupling to crystals
 - c. Put microLEDs directly on crystal
- 6. Cabling
 - a. Build/buy a moving cable tray (stacked vertically) to allow easier motion on platform
- 7. Sweep Magnet
 - a. Reconsider placement, rotation with respect to crystal axis
- 8. Calorimeter Mechanics
 - a. Any way to simplify repairs?
 - i. Expanded lateral movement of distribution boards
 - b. Improve temperature sensor reliability, radiation hardness