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I. INTRODUCTION

Belitsky Müller and Kirchner[1] give a complete description of the kinematic dependence of the ep → epγ cross
section in terms of the Generalized Parton Distributions (GPD). In this note, we summarize the beam helicity (λ)
dependent cross sections for unpolarized targets. We identify the independent structures that can be extracted from
an analysis of the φ dependence of the cross section. The equation numbers in this note match the equations of [1].

The 6-fold differential cross section has the form:
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dR represents the real and virtual radiative corrections. In Eq. 22 we have integrated over ϕ, the azimuthal angle
between the outgoing photon-proton scattering plane and the target polarization direction, and we have introduced
the differential with respect to the azimuthal angle φe of the electron scattering plane.

The scattering amplitude T is a superposition of the Bethe-Heitler (BH) and Deeply Virtual Compton Scattering
(DVCS) amplitudes:

|T |2 = |TBH|2 + |TDVCS|2 + I (23)
I = T ∗

DVCSTBH + TDVCST ∗
BH (24)

II. AZIMUTHAL HARMONIC STRUCTURE OF THE CROSS SECTION

We propose to exploit the structure of the cross section as a function of φγγ in order to extract a set of indepedent
observables. This extraction can be done as a system of linear equations.

The individual contributions to the cross section have the form:
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|TDVCS|2 =
e6

y2Q2

{
cDVCS
0 +

2∑
n=1

[
cDVCS
n cos(nφγγ) + sDVCS

n sin(nφγγ)
]}

(26)
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Notice in the following formulae, that all sin(nφ) terms depend on the electron helicity, and sI3 = 0. The φγγ

dependence of the cross section arises from both the fourier structure of Eq’ns 25–27, (from the virtual photon
polarization) and the lepton BH Propagators:

Q2P1 = (k − q2)2 = Q2 + 2k · Δ > 0,

Q2P2 = (k − Δ)2 = −2k · Δ + Δ2 < 0. (28)

The pure Bethe-Heitler cross section term |TBH|2 depends only on bilinear combinations of the ordinary elastic
form factors F1(Δ2), F2(Δ2). In our analysis, we propose to set all such terms to a fixed parameterization of the
experimental form factors, but to apply a single free global normalization to |TBH|2.
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The harmonic coefficients of the DVCS2 term have the form:
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For an unpolarized target, the Interference observables are (in the rest we suppress the label unp for un-polarized
target observables):
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sI3 = 0

Table I summarizes the independent angular harmonics. The precise definitions are given in terms of the GPDs in
Eq. 66–83 of Belitsky[1]. They have the basic form:

• CDV CS(F ,F∗) is a (real) bi-linear combination of the Twist-2 quark GPDs F = {H, E , H̃, Ẽ}

• CDV CS(Feff ,F∗) is the same bi-linear combination, but it is complex because the Feff include effective Twist-3
GPDs (Wanzura-Wilxec)

• CDVCS
T (FT ,F∗) is the interference of the Twist-2 Gluon Transversity GPDs FT with the ordinary GPDs F .

• CI(F) is the interference of the BH amplitude with the Twist-2 quark GPDs.

• ΔCI(F) also depends on the twist-2 quark GPDs, but is kinematically suppressed by a factor xBj. This term
arises from the corrections to restore EM Gauge invariance at the twist-2 level??

• CI(Feff) has the same form as CI(F), but depends upon the WW effective Twist-3 GPDs (Feff).

• CI
T (FT ) is the interference of the four Twist-2 Gluon Transversity GPDs FT with the BH amplitude.

III. EXTRACTION OF OBSERVABLES

We develop a general notation to explain the proceedures for extracting the observables of Table I from the data.
Fig. 1 illustrates our notation. Let

xv = {k, xBj, Q
2, Δ2, φe, φγγ , z}v (III-1)

represent the kinematic variables at the event vertex (in the simulation). The incident electron energy k is included,
in order to treat the radiative tail. Let

xe = {xBj, Q
2, Δ2, φe, φγγ}e (III-2)

represent the event variables, as reconstructed by the detector. In the Monte-Carlo simulation, we define the mapping

K(xe|xv) (III-3)
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Unknown Type φ dependance Eq.

BH2 normalisation constant Elastic P−1
1 P−1

2 (co 35

Form +c1 · cos(φ) 36

Factors2 +c2 · cos 2φ) 37

CDV CS
unp (F ,F∗) twist-2 ct 43

DV CS2 �[CDV CS
unp (Feff ,F∗)] twist-3 cos φ 44

�[CDV CS
unp (Feff ,F∗)] twist-3 sin φ 44

�[CDV CS
unp (FT ,F∗)] twist-3 cos 2φ 45

�[CI
unp(F)] twist-2 P−1

1 P−1
2 53

P−1
1 P−1

2 cos φ 54

�[ΔCI
unp(F)] twist-2++ 1

P1P2
53

BH · �[CI
unp(F)] twist-2 λ

P1P2
sin φ 54

DV CS �[CI
unp(Feff )] twist-3 1

P1P2
cos2φ 55

�[CI
unp(Feff )] twist-3 λ

P1P2
sin 2φ 55

�[CI
T,unp(FT )] twist-2 gluon 1

P1P2
cos 3φ 56

TABLE I: The 11 independant unknown quantities (including one normalisation coefficient) that can be extracted from the
data. The forth column gives the formal φ dependence of each term. The last column is the the equation label of the A.V.
Belitsky-D. Muller paper. Each of the 11 unknowns can be binned in ξ, Δ2 = t, and Q2.

as the conditional probability distribution to observe an event at the kinematic point xe, starting from vertex point
xv. The experimental acceptances, efficiencies, and resolution are included in K. Let dR define the radiative effects
generating a flux of electrons, differential in k. The binning vector

ie = {iξ, iQ2 , iΔ2}e (III-4)

labels a set of bins in the corresponding event kinematics, after integration over φe and φγγ . The binning vector

jv = {jξ, jQ2 , jΔ2}e (III-5)

labels a similar set of bins in the vertex variables. The vector Xj = X
(Λ)
j defines the set of observables C, ΔC . . . of

Table I averaged over the bins jv of Eq. III-5. The index Λ identifies the observable. The functions

F (Λ)(xv) (III-6)

are the kinematic factors defined schematically in column 4 of Table I and explicitly in Eqs. 35–65 of [1], including
the prefactors of Eqs. 22,25–27.

We define a bin mapping function:

Kie,jv = K
(Λ)
ie,jv

=
∫
xe∈Bin(ie)

∫
xv∈Bin(jv)

dRK(xe|xv)F (Λ)(xv) (III-7)

The integrated experimental luminosity is
∫
Ldt. For a given set of values Xjv , the expected yield (number of counts

per bin) is:

Y MC(ie) =
[∫

Ldt

]∑
jv ,Λ

K
(Λ)
ie,jv

X
(Λ)
jv

(III-8)

We can now construct a chi-square, which can be minimized to extract the Xj:

χ2 =
∑
ie

[
Y Exp(ie) − Y MC(ie)

]2
[σExp(ie)]

2 , (III-9)

where σExp(ie) are the experimental error-bars in each bin.
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FIG. 1: Schematic representation of the measurement and simulation process. A given event is defined by the kinematic
vector Xv at the vertex. The physics vertex kinematic space is illustrated by the red circles at right. As a result of multiple
scattering, straggling, bremsstrahlung, optical aberations in the spectrometer, etc., the event is reconstructed with kinematics
Xe. The reconstructed event space is illustrated by the blue circle at left. Notice that a given physics event Xv can end up at
multiple locations X′

e, X′′
e in the event space. This is indicated by the multiple arrows, labelled by the conditional probability

distribution K. The event space at right is replicated 11 times to represent the eleven independent physics observables defined
in Table I. In the simulation, for each projection Xv �→ Xe, we apply the eleven kinematic weight factors F (Λ) to the probability
distribution K(Xe|Xv).

Notice that the vector X
(Λ)
jv

is an outer product with respect to its two indices jv and Λ. The coefficients Xjv are
defined as the values of Xjv that minimize χ2:

0 = −1
2

∂χ2

∂X
(Λ)
jv

∣∣∣∣∣
Xjv

(III-10)

0 =
∑
ie

[∫
Ldt

]
K

(Λ)
ie,jv

[∫
Ldt
]∑

j′v ,Λ′ K
(Λ′)
ie,j′v

X
(Λ′)
j′v

− Y Exp(ie)

[σExp(ie)]
2 (III-11)

0 =
∑
j′v,Λ′

α
(Λ),(Λ′)
jv ,j′v

X
(Λ′)
j′v

− β
(Λ)
jv

∀ jv, Λ. (III-12)
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The linear system is defined by:

α
(Λ),(Λ′)
jv ,j′v

=
∑
ie

[∫
Ldt

]2

K
(Λ)
ie,jv

K
(Λ′)
ie,j′v

/[
σExp(ie)

]2
(III-13)

β
(Λ)
jv

=
∑
ie

Y Exp(ie)
[∫

Ldt

]
K

(Λ)
ie,jv

.
/[

σExp(ie)
]2

(III-14)

The fit parameters are:

X
(Λ)

jv =
∑
j′v ,Λ′

[
α−1

](Λ),(Λ′)
jv ,j′v

β
(Λ′)
j′v

. (III-15)

The covariance matrix of the fitted parameters is:

V
(Λ,Λ′)
jv ,j′v

=
[
α−1

](Λ),(Λ′)
jv ,j′v

. (III-16)

IV. MODEL DEPENDENT IMPROVEMENT TO THE FIT

There is a systematic error in the proceedure defined above. The observables Xjv are taken at the center of the
kinematic bin jv. However, if we maximize our statistics, and use only one bin Δξ = 0.5, then the observables can
vary by as much as a factor of two within the bin. We can resolve this problem (or at least provide an estimate of
the resulting uncertainty) by incorporating a model of the observables Xjv into our definitions of the kinematic
functions F (Λ)(xv). To wit:

F (Λ)Model(xv) = F (Λ)(xv)X(Λ)Model(xv)
/

X
(Λ)Model
jv(xv) , (IV-17)

where X(Λ)Model(xv) are the values of the observables evaluated in the model at the kinematic point xv and X
(Λ)Model
jv(xv)

are the values of the observables evaluated in the model at the center of the bin jv corresponding to the kinematic
point xv. In this way the fitted values X

(Λ)

jv will be the experimental values at the center of the bin, evaluated with
the full model dependence inside the bin.

V. MONTE CARLO INTEGRATION

The integrated bin mapping function K
(Λ)
ie,jv

of Eq. III-7 is calculated by Monte Carlo simulation. In general, a
monte carlo integration is defined as follows [2]:∫

f(x)ρ(x)dnx → V 〈f〉 ± V√
N

√
〈f2〉 − 〈f〉2

〈f〉 =
1
N

N∑
i=1

f(xi)

〈
f2
〉

=
1
N

N∑
i=1

f2(xi) (V-18)

The random events xi are chosen with probability distribution ρ(xi) in the volume V .
In our case the monte carlo integration is complicated by the radiative effects (external and internal). The vertex

variables xBj, Q2, φe, t, φγγ , and z are chosen with uniform distributions. All the variables except t are chosen in a
fixed interval. Because of the kinematic bounds, t is chosen in the interval:

t ∈
[
tMax, tMin(x, Q2)

]
(V-19)

In principle, tMax also depends on the kinematics, but we chose a small enough absolute value that is does not matter
Thus each event receives a phase space weight:

ΔΓ/N = ΔzΔxBjΔQ2Δφe2πΔt(xBj, Q
2)/N (V-20)
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A. Radiative Lineshape

We generate the radiative lineshape with its intrinsic distribution, and not with a uniform event generator. The
vertex position defines the target radiation thickness ti(z) in the initial state. The external radiation in the initial
state is obtained by defining ΔkExt

i = k0R
1/(bti)
Ext [3], where b ≈ 4/3 is the Mo & Tsai parameter and RExt is a uniform

random variable on the interval [0, 1]. This generates an external radiation distribution

IExt(k0, ΔkExt
i , ti) =

1
k0bti

(
ΔkExt

i

k0

)bti−1

. (V-21)

The internal radiation at the vertex is handled with the same algorithm. The radiation is treated in the peaking
approximation, and is split between the initial and final states. The internal radiation along the incident beam
direction is (R iInts another uniform deviate) [4]

ΔkInt
i = (k0 − ΔkExt

i )R2/δ
Int (V-22)

IInt(k0 − ΔkExt
i , ΔkInt

i ) =
2
δ

1
ΔkInt

i

(
ΔkInt

i

k0 − ΔkExt
i

)δ/2

(V-23)

δ =
α

π
ln
[

Q2

m2
e

]
(V-24)

The incident electron energy at the vertex is

kv = k0 − ΔkExt
i − ΔkInt

i (V-25)

The scattered electron energy at the vertex is

k′
v = k − ν(xBj, Q

2) = k − Q2/[2M(xBj]. (V-26)

The electron scattering angle at the vertex is defined by:

cos θv = Q2/(2kvk
′
v). (V-27)

The post radiation (internal and external) are treated in the same way. The internal post radiation (along the
direction θv of k′

v) is [5]:

ΔkInt
f = k′

vR
2/δ
Int,f (V-28)

IInt(k′
v, ΔkInt

f ) =
2
δ

1
ΔkInt

f

(
ΔkInt

f

k′
v

)δ/2

(V-29)

From the scattered trajectory, the final thickness in radiation lengths of the exit electron trajectory is tf (zv, θv, φe).
The external radiation distribution is:

ΔkExt
f = (k′

v − ΔkInt
f )R1/(btf )

Ext,f (V-30)

IExt(k′
v − ΔkInt

f , ΔkExt
f , tf ) =

1
(k′

v − ΔkInt
f )bti

(
ΔkExt

f

(k′
v − ΔkInt

f )

)btf−1

. (V-31)

The final energy of the electron, leaving the target is

k′ = k′
v − ΔkInt

f − ΔkExt
f (V-32)

B. Monte Carlo Variables

The complete set of uniform random variables at the vertex are:

{z, xBj, Q2, RExt
i , RInt

i , φe, RInt
f , RExt

f , Δ2 = t, φγγ} (V-33)
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Notice that the variables must be generated in the order listed.
Because the vertex position is a random variable, the effective target length is determined by the simulation. It

is incorrect to normalize the simulation by the integrated luminosity
∫
Ldt. Instead, the simulated yield must be

normalized by ∫
dL
dz

dt =
Q

e
ρH2 , (V-34)

where Q is the integrated beam charge and ρ is the target density in nuclei/cm2.

VI. INCLUDING THE MONTE-CARLO ERROR BARS

The statistical analysis presented above includes only the experimental uncertainties σExp(ie) in each kinematic
bin. However, the simulation of the mapping function K

(Λ)
ie,jv

also has a monte-carlo statistical uncertainty. How can
we include these simulation uncertainties into the covariance matrix of the fitted observables Xjv?

Notice that the only rôle of the experimental error bars is to define the bin by bin weight of χ2 in Eq. III-9. We
define a monte carlo uncertainty:

σMC(ie) = Monte Carlo error on Y MC(ie). (VI-35)

The monte carlo and experimental error bars are independent. Thus in the definitions of χ2, α, and β (Eq. III-9,III-
13,III-14) we can make the substitutions:

[
σExp(ie)

]2 →
[
σExp(ie)

]2
+
[
σMC(ie)

]2
(VI-36)

Unfortunately, this introduces a model dependence, or non-linearity, to the fit. The bin mapping matrix elements
K have monte carlo statistical uncertainties δK. Therefore the uncertainties in Y MC are:

[
σMC(ie)

]2
=
[∫

Ldt

]2∑
Λ

[
δK

(Λ)
ie,jv

]2 [
X

(Λ),Model
jv

]2
(VI-37)

Thus it is necessary to either include a model of X, or to iterate on the fitted values X. It is also necessary to consider
whether the monte carlo uncertainties δK

(Λ)
ie,jv

are truely statistically independent.

VII. POISSON STATISTICS

The χ2 minimization proceedure described above is based on gaussian statistics, which is valid if the number of
events per bin is large. In principle, we should use Poisson statistics, which are exact for all low count rate experiments
(relative to the beam intensity). If some of the observables are predominantly determined by low statistics bins then
there is a systematic error in gaussian statistics, arising from the asymmetry of the poisson distribution.

A. Gaussian Overfit of Poisson Statistics

We illustrate the problem of applying Gaussian statistics to a Poisson statistics problem. Let N(i) be the set of
counts per bin in an experiment. Let y(i) =

∑
j ajfj(i) be a fitting function. Then we define the usual χ2:

χ2 =
∑

i

[
y(i) −

∑
j ajfj(i)

]2
σ(i)2

. (VII-38)

After minimizing χ2, the fitted parameters and the minimized value of χ2 are:

aj =
[
α−1

]
j,k

βk (VII-39)

αj,k =
∑

i

fj(i)fk(i)/σ(i)2 (VII-40)
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βk =
∑

i

y(i)fk(i)/σ(i)2 (VII-41)

χ2 =
∑

i

[
y(i) −

∑
j ajfj(i)

]2
σ(i)2

(VII-42)

=
∑

i

y(i)2

σ(i)2
− βjα

−1
j,kβk (VII-43)

We can approximate Poisson statistics by setting σ(i)2 = y(i). Then we find that the fit systematically underesti-
mates the data by an amount exactly equal to χ2:

χ2 =
∑

i

y(i) − βjα
−1

j,kβk (VII-44)

βj(Poisson) =
∑

i

fj(i) (VII-45)

∑
i

[y(i) − ajfj(i)] =
∑

i

[
y(i) − fj(i)α−1

j,kβk

]
=
∑

i

y(i) − βjα
−1

j,kβk

= χ2 (VII-46)

We expect the minimized value χ2 to be nearly equal to the number of bins minus the number of free parameters. As
long as the total number of events is much larger than χ2, the systematic underfit is not a major problem. However,
even if the statistics are high, if there are parameters that are determined mostly by low statistics kinematic regions,
then the underfit can strongly bias the extracted parameters. The resulting error can be greater than the statistical
uncertainty on the small paraemter.

The underfit problem can be partially resolved by setting σ(i)2 = y(i) + 1. This has the virtue of defining a finite
statistical error for bins with zero counts, and reflects the fact that for the Poisson distribution, the most probable
value is approximately 1 less than the mean. A better correction is to set σ(i)2 not equal to the data, but equal to the
fit. After all, the conjecture of the fit is that the data are obtained from a parent Poisson distribution whose mean is
equal to the fitted value. In the extreme cases of bins with zero counts, the fit will generally give a fraction of a count,
with appropriate error bar. This method has the strong disadvantage that we no longer obtain linear minimization
problem.

VIII. KINEMATIC SENSITIVITY TO PHYSICS OBSERVABLES

In Fig. 2, we plot the kinematic weight factors F (Λ) of the BH-DVCS interference terms. In each case, we compare
with the full BH term |TBH/e3|2 (including the elastic form factors). Notice that the weight factor for the Gluon
Transversity term �[CI(FT )] is very small, but growing with −t.

In Fig. 3, we display similar plots of the kinematic weight factors F (Λ) of the DVCS2 cross section terms.
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FIG. 2: Kinematic factors F (Λ), which weight the physics observables in DVCS. The blue and black curves are the complete
|TBH |2 terms, evaluated at −t = 0.2 and 0.4 GeV2, respectively. The six panels display the kinematic weight factors of the

BH-DVCS interference observables. The green and red curves give the kinematic weight factors F (Λ) at −t = 0.2 and 0.4 GeV2,
respectively. The �CI(F ) term is the helicity dependent sin φ term which is the focus of most of the DVCS experimental
work. Notice that the interference amplitudes in the top three panels are normalized by one. In the bottom three panels, the
interference amplitudes are amplified by factors of 5, 5, and 50, from left to right, to enhance their visibility on the plots.
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FIG. 3: Kinematic factors F (Λ), which weight the physics observables in DVCS (same conventions as Fig. 2). The blue and
black curves are the complete |TBH |2 terms, evaluated at −t = 0.2 and 0.4 GeV2, respectively. The four panels display the
kinematic weight factors of the |TDV CS |2 terms. Notice the normalization factors applied to the DVCS terms.


