

Waveform analysis of NPS data and preliminary physics plots

Wassim Hamdi

18th of July 2024

NPS Collaboration Meeting

Outlines

- Waveform analysis
- Time resolution
- Energy Resolution
- Pi0 energy calibration
- e N $\rightarrow\,$ e Y N and e N $\rightarrow\,$ e $\pi0$ N $\,$ analysis

Waveform Analysis

First step: Select from the elastic data a reference waveform for each NPS channel using certain criteria

- Pulses should be:
- In Coincidence (+/- 5 samples)
- Highest amplitude
- Lowest noise in the Background
- No multiples or pile-up
- Add a constant vertical shift to have an average baseline equal to 0 mV
- Normalization of the ref. wf. to 1 mV amplitude

Remove any fluctuation by setting all the ref. wf. samples to 0 mV in the bkg region

Waveform Analysis

Second step: Produce a Fit function for each block

- Interpolate the 110 samples of the ref. wf. with Spline to create a function *f(t)*
- The fit function:

(mV)

0.8

0.6

normalized ref. wf.

spline interpolation

f(t)

.

Waveform Analysis

Third step: Detect the number of pulses in the waveform, estimate the amplitude and time

- The identification of a pulse is based on 4 consecutive samples with increasing values followed by 2 consecutive samples with decreasing values
- The time and the rough estimate of the amplitude of the pulses found are used to help the fit

FITTED WAVEFORMS

TIME RESOLUTION STUDY

Clustering Scheme

Steps:

8

- For each block: [time[i]]<5*rmstime[i]
- Search for the seed block
- Apply the 5x5 clustering
- Calculate the cluster energy and the impact position:

$$E_{i} = C_{i}A_{i} / \vec{x} = \frac{\sum_{i} w_{i} \vec{x}_{i}}{\sum_{i} w_{i}} / w_{i} = \max\left\{0, \left[W_{0} + \ln\left(\frac{E_{i}}{E}\right)\right]\right\}$$
$$W_{0} = \ln\left(\frac{100 \ E(\text{GeV})}{2.02 \ e^{-\frac{d}{r_{M}}} + \left[4.98 \ e^{-\frac{d}{r_{M}}} + 0.30\right] E(\text{GeV})}\right)$$

- Calculate 4-vector using the shower depth (a) correction (G4 simulation)
- 0.5 GeV as a cluster threshold

Energy Resolution

Events

2000

1800

1600

NPS energy resolution at 7.3 GeV, elastic runs 1974 to 1982

waveform analysis

p1 0.128 ±0.000 1400 p2 0.004421 ± 0.000052 111.8 ± 10.0 p3 1200 0.128 GeV 1000 800 600 0.135 GeV 400 200 0.1 0.12 0.16 0.14 0.18 0.2 Invariant mass (GeV)

Invariant Mass (GeV)

histMinv

30628

0.1279

0.01631

28.94 / 17

 1940 ± 19.4

Entries

Mean

Std Dev

 χ^2 / ndf

0q

Not sufficient → Calibration using π0 is needed

9

Method:

- With exclusive $\pi 0$ events, the expected energy of the $\pi 0$ can be calculated using its scattering angle. A minimization between the measured energy and the expected $\pi 0$ energy allows to calibrate the NPS channels
- We usually do 3 to 4 iterations before converging to the most suitable calibration coefficients

$e p \rightarrow e \pi 0 p$ results

- Kinematics: KinC_x60_3
- 6 Runs for LH2: 2011, 2013, 2014, 2015, 2016 and 2017
- 4 Runs for LD2: 1990, 1991, 1992 and 1993
- Only the basic HMS cuts : [dp]<8% & [ph]<0.04 & [th]<0.08 & [react.z]<4

 Used the following relationship for the corrected missing mass: mm2+a*minv-b

DVCS Missing Mass Plots

A noticeable improvement

DVCS Analysis (Pi0 Contamination)

Method:

- 3 Main criteria for the $\pi 0$ events selected from data:
- No edge block clusters
- Energy of the photons is above the trigger threshold
- A correct invariant mass
- Simulate the decays of each detected $\pi 0$ by randomizing the photon angles 5000 times in the c.m. frame: $\cos \theta$ [-1, 1] Azimuthal angle (θ = decay angle) [0, 2 π]

- Divide the decays by number of photons generated: N0= events with no y detected
 N1= events with 1 y detected
 N2= events with 2 y detected
- Each event with N1 is subtracted from the DVCS events and before hand multiplied by 2 factors:
 a1 = 1/5000 and a2 = 5000/N2

DVCS Analysis (π0 Contamination)

Threshold Scan

 Steps of 0.1 GeV for the π0 threshold from 0.6 GeV (black plot) to 1.3 GeV (Grey plot)

- Chose the 1 GeV Threshold for both since it's stable+higher in [0.5, 1.5] GeV2
- LH2 trigger threshold: 0.75 GeV

DVCS Analysis

DVCS Analysis

(DVCS Yield Study)

- Calculated the yield of DVCS events between 0.5 GeV2 and 1.1 GeV2 for the case of 1 cluster events 6256
- For 2 clusters events → 315 (5.03%)
- For 3 clusters events 17 (0.27%)
- All the histogram of different contributions are added to the 1 cluster Mx2 raw spectrum

npscut1==1&&nbclus==2&&clusener[0]>0.5&&TMath::Abs(minv-0.135)>3*0.0038

One Case: Events N01 = 315.00 $ep \rightarrow e\gamma X$ 250 ²⁰⁰ Potential DVCS events 150 100 ᡁᡙᢧᡗ LH2 50 (1 cluster events) 16 2.5 1.5 2 Mx^2 (GeV²)

 Each cluster in a multi-cluster event is systematically considered as a potential DVCS event if it does not originate from a π0 decay (the invariant mass of that photon when combined with another photon is different from the mass of π0)

DVCS Analysis (DVCS Accidentals)

- Window: +/- 10 ns from the coincidence pulse time
- The accidentals are obtained with the same method used for the coincidence events :

- If cluster number 0 in 2-cluster events contributes to the coincidence Mx2 spectrum then its contribution is also determined and added to the total accidental Mx2 spectrum

Preliminary Results

Better resolution and exclusivity than previous DVCS experiments

DVCS Analysis

(π 0 Accidentals)

- N0: 2 photons are in coincidence with each other and with the scattered electron
- **N1 + N2: 2** photons are in coincidence with each other but not in coincidence with the scattered electron
- N3_T + N3_B + N4_L + N4_R: both photons are not in coincidence with each other and only one of them is in coincidence with the scattered electron
- N5 + N6: both photons are neither in coincidence with each other nor with the scattered electron

- 3 time frames:
 - |time[i]|<5*rmstime[i]</pre>
 - |time[i]-10<5*rmstime[i]</p>
 - |time[i]+10<5*rmstime[i]

All Accidentals = 0.5 * (N1+N2+N3 B+N4 L+N3 T+N4 R) - (N5+N6)

19

DVCS Analysis (π0 Resolution Check)

 Small differences between the 2 resolutions of the π0 invariant mass

 Will be multiplying the cluster energy of LD2 in order to bring it up to the same resolution by the following ratio: mean_LH2/mean_LD2

Fermi Smearing

LH2 not smeared $\rightarrow M_x^2 = (P_p')^2 = (q + P - q')^2$ How to smear it?

Smearing term

- For the DVCS off the deutron reaction: $\gamma^* + {}_1^2 D \rightarrow \gamma + n' + p' \qquad P_d = (M_d, \mathbf{0})$ Deuteron mass $q + P_d = q' + P'_n + P'_p$ With $= \left(\sqrt{M^2 + \mathbf{P}_f^2}, \mathbf{P}_f\right) + \left(\sqrt{M^2 + \mathbf{P}_f^2}, -\mathbf{P}_f\right) + \left(M_d - 2\sqrt{M_d^2 + \mathbf{P}_f^2}, \mathbf{0}\right)$
- We can rewrite the previous equation as follows:

$$q + P_n + P_p + P_{add} = q' + P'_n + P'_p$$

With
$$P_{add} = \left(M_d - 2\sqrt{M_d^2 + \mathbf{P}_f^2}, \mathbf{0}\right)$$

• The missing mass of the deuteron can be then written as follows:

$$M_x^2 = \left(P_p' + P - P_p - P_{add}\right)^2$$

With $P = (M, \mathbf{0})$

• Then we smear the LH2 data as follows:

$$M_x^2 = \left(q + P - q' + P - P_p - P_{add}\right)^2$$

Fermi momentum distribution

$e N \rightarrow e \pi 0 N$ analysis

Corrected missing mass without any target correction

$e N \rightarrow e \gamma N$ analysis

DVCS missing mass squared without any correction

Summary

• Waveform analysis is a crucial tool to extract the highest resolution possible obtained by the NPS calorimeter

- Better exclusivity and resolution than the previous DVCS experiments is already conducted
- More sophisticated analysis is ongoing...

Back up Slides

DVCS with (0.72) correction

Fermi smearing effect

Corrected missing mass squared (GeV2)

Raw missing mass squared (GeV2)

pp*(nbclus==2&&TMath::Abs(minv-0.135)<3*0.0039&&clusener[0]>0.5&&clusener[1]>0.5&&npscut1==1)

Shower depth correction

For each energy value, we determine "a" in such a way that the difference between the position xc (centroid position of the cluster) and x'c obtained by a Geante 4 simulation is centered around 0 and has the lowest RMS.

Exclusive Pi0 Missing Mass Squared

Exclusive Pi0 Invariant Mass

- Red ==> N1
- Green ==> N2
- Black ==> N3_B (bottom) + N4_L (left)
- Pink ==> N3_T (Top) + N4_R (right)
- Sky Blue ==> N5 + N6

LD2 π0 ACCIDENTALS

DVCS missing mass squared with the factor 0.72 applied

Method:

2) Calculate the expected Pi0 energy:

$$M_{N}^{2} = \left(k + p - k' - q_{1}' - q_{2}'\right)^{2} = \left(k + p - k'\right)^{2} + M_{\pi^{0}}^{2} - 2(k_{0} - k_{0}' + M_{N})E_{\pi^{0}}^{cal} + 2\|\vec{q}\|\sqrt{\left(E_{\pi^{0}}^{cal}\right)^{2} - M_{\pi^{0}}^{2}} \cos \theta$$

$$a = 4(k_{0} - k_{0}' + M_{N})^{2} - 4\|\vec{q}\|^{2}\cos^{2}\theta,$$

$$b = 4(k_{0} - k_{0}' + M_{N})\left[M_{N}^{2} - (k - k' + p)^{2} - M_{\pi^{0}}^{2}\right],$$

$$c = 4M_{\pi^{0}}^{2}\|\vec{q}\|^{2}\cos^{2}\theta + \left[M_{N}^{2} - (k - k' + p)^{2} - M_{\pi^{0}}^{2}\right]^{2}.$$

Mazouz, M. Energy calibration of laterally segmented electromagnetic calorimeters based on neutral pion detection. Nucl. Sci. Tech. 28, 155 (2017)

3) Minimization:

• The following minimization between the calculated energy and the reconstructed one:

$$\chi^{2} = \sum_{j=1}^{N_{\pi^{0}}} \left(E_{\pi^{0}}^{\text{cal}}(j) - E_{\pi^{0}}^{\text{rec}}(j) \right)^{2} \quad \text{With} \quad N_{\pi^{0}} \longrightarrow \text{Number of Pi0 events}$$
$$E_{\pi^{0}}^{\text{rec}}(j) = \sum_{i=1}^{N_{\pi^{0}}} \epsilon_{i} E_{i}'(j) d_{i}(j) \longrightarrow \text{Reconstructed energy}$$

• We get the following linear set of equations:

$$\sum_{i=1}^{N_{\pi^0}} E_i'(j) d_i(j) E_k'(j) d_k(j) \bigg] \epsilon_i = \sum_{j=1}^{N_{\pi^0}} E_{\pi^0}^{\text{cal}}(j) E_k'(j) d_k(j)$$

• The correction factors are obtained by inverting the following matrix:

$$lpha_{ik} = \sum_{j=1}^{N_{\pi^0}} E_i'(j) d_i(j) E_k'(j) d_k(j)$$

Mazouz, M. Energy calibration of laterally segmented electromagnetic calorimeters based on neutral pion detection. Nucl. Sci. Tech. 28, 155 (2017)

Detector Performance

TIME RESOLUTION STUDY (LD2+LH2 RUNS COMBINED)

From DVCS to GPDs

Spin Crisis

3D STRUCTURE OF THE NUCLEON

Wigner Distributions and GPDs

General formalism for a quantum system

$$W(r,p) = \int_{-\infty}^{+\infty} dz e^{ipz} \psi^*(r-z/2) \psi(r+z/2)$$
 Wigner Distribution

Dirac

For the case of relativistic quarks and gluons

In the infinite momentum reference frame

$$F_{\Gamma}^{q}(P, x, \Delta) = \frac{P^{+}}{4\pi} \int dz^{-} e^{ixP^{+}z^{-}} < p' |\bar{\psi}(-z/2)\Gamma\psi(z/2)|p > |_{z^{+}=\vec{z}_{\perp}=0}$$

$$F_{\gamma^{+}}^{q}(x, \xi, t) = \overline{H^{q}(x, \xi, t)}\overline{U}(p')\gamma^{+}U(p) + \overline{E^{q}(x, \xi, t)}\overline{U}(p')\sigma^{+\nu}\frac{\Delta_{\nu}}{2M}U(p)$$

$$F_{\gamma^{+}\gamma^{5}}^{q}(x, \xi, t) = \overline{\tilde{H}^{q}(x, \xi, t)}\overline{U}(p')\gamma^{+}\gamma^{5}U(p) + \overline{\tilde{E}^{q}(x, \xi, t)}\overline{U}(p')\gamma^{5}\frac{\Delta^{+}}{2M}U(p)$$
Particle with S = 1/2

DVCS on the neutron

 Using the Approximate isospin symmetry of QCD we obtain the simplest way to perform a flavor decomposition of the u and d quark GPDs:

$$H^{p} = \frac{4}{9}H^{u} + \frac{1}{9}H^{d} \qquad H^{n} = -\frac{1}{9}H^{u} + \frac{4}{9}H^{d}$$

• The unpolarized "n-DVCS" cross sections at low t have a direct relevance in the determination of the quark angular momentum via Ji's sum rule:

$$J^{q} = \frac{1}{2} \int_{-1}^{1} x dx [H^{q}(x,\xi,t=0) + E^{q}(x,\xi,t=0)] \quad \forall \xi$$

Mazouz et al. Physical review letters, 99(2007), 242501

n-DVCS and d-DVCS seperation (Hall A results and upcoming steps)

Benali et al. Nat Phys 16 (2020) 191

1.6 M_{ν}^2 (GeV²)

0.8

0.6

0.2

DVCS Cross Section

But using a polarized electron beam: Asymmetry appears in Φ

Kroll, Guichon, Diehl, Pire ...

Experimental Setup

- The photon will be collected by the NPS lead tungsten calorimeter
- The scattered electron will be detected in the HMS
- e target HMS

• The recoil particle off the LH2/LD2 target will be identified by missing mass

n-DVCS Kinematics

Data Taken in 2023

x_Bj	Kinematic Setting	Pass	Q2 (GeV^2)
0.36	KinC_x36_3	5	3.0
	KinC_x36_5	5	4.0
	KinC_x36_2	4	3.0
0.50	KinC_x50_2	5	3.4
	KinC_x50_3	5	4.8
	KinC_x50_1	4	3.4
0.6	KinC_x60_3	5	5.1
	KinC_x60_2	4	5.1

Data taken in 2024

x_Bj	Kinematic Setting	Pass	Q2 (GeV^2)
0.25	KinC_x25_1	5	2.1
	KinC_x25_2	5	2.4
	KinC_x25_3	4	2.4
	KinC_x25_4	3	3.0
0.36	KinC_x36_6	5	5.5
	KinC_x36_4	4	4.0
	KinC_x36_1	3	3.0
0.5	KinC_x50_0	3	3.4
0.6	KinC_x60_4	5	6.0
	KinC_x60_1	3	5.1

- High xbj --> high |t| --> better separation
- Different beam energies that will further give a better extraction of the different CFFs from the DVCS cross sections
- To reduce systematic uncertainties, LH2 and LD2 run periods are interleaved frequently (every few hours)

DVCS NPS/HallC/JLab 2023-2024

Sharp drop of the deuteron form factors as

 increases

HMS Single Arm Pre-Trigger

Credits to C.Yero

NPS/HMS Coincidence

Credits to B.Michaels, J.Poudel, B.Raydo, C. Ghosh, Y. Zhang

How do we store the waveforms?

If sample > PEDESTAL+ Threshold ==>> HIT detected in the FADC

FADC computes the integral+ PED substraction + Gain applied ==>> Energy in MeV (13 bit) streamed to the VTP

Data Acquisition and electronics

- Flash Analog to Digital Converter (FADC)
- VXS Trigger Processor (VTP)

FADC Data Stream

Cluster Trigger

- Single photon cluster trigger (S.P.T):
- 1) The first Basic Steps by the VTP
- 2) The Cluster Energy Is Above The S.P.T (1400 MeV)

==>> We have a DVCS cluster in hand

- 3) Readout threshold energy (500 MeV) is applied:
 - We use the 7x7 Clustering around the seed block
 - The VTP sends the readout channels masks in the 7x7 to the FADC in order to read out the raw wavefoms of these channels

VTP and Clusters reconstruction

• VTP BASIC STEPS:

1) If the seed Energy is above the threshold value (70 MeV) $\sqrt{}$

2) If the seed energy is a local maximum with respect to the 8 neighbors within the value of the time window (+- 20 ns from the seed) $\sqrt{}$

3) The Cluster Energy is calculated by summing up all the energies from the 9 blocks \checkmark

4) Information stored:

- The x pos (column number), y pos (row number)
- Time of the seed block
- Total energy of the 3 by 3 cluster

=> Coda file words => ROOTfile variables => Waveforms

VTP Performance

Preliminary Results

Exclusive neutral pion contamination

 Better resolution than the previous DVCS experiments

Thanks for everyone who contributed to the experiment

Thank you for your attention!