

Energy calibration of NPS

summary of elastic calibration and the status of calibration using $\pi^0{\longrightarrow}\gamma\gamma$

Hao Huang

Carlos Munoz Camacho

NPS Collaboration Meeting

2024.07.18

Elastic calibrations in 2023

➤2 iterations were performed at the beginning for the first set of production HVs

➢No update of HVs for columns which were OFF due to radiation damage

	Date	Runs used (pass of beam)	Purpose	Calo. status	
1	Sep. 25	1341, 1342, 1413-1421 (<mark>5</mark>)	New HV settings	full	
2	Sep. 26	1437-1442 (<mark>5</mark>)	New HV settings	full	
		1555-1560 (<mark>5</mark>)	Calibration with new HVs	full	
3	Oct 2	1507, 1510, 1511, 1556, 1557, 1559 (<mark>5</mark>)		 No dependency 	
5	000.2	1549-1554 (<mark>5</mark>)	Temperature dependence		 Dependency was found
4	Oct. 20	1971-1982 (<mark>5</mark>)	Calibration	col. 0 OFF	 Experiment started First radiation-damaged
5	Nov. 12	2855-2867, 2869, 2871 (<mark>5</mark>)	New HV settings	col. 0-4 OFF	base found in mid-Octobe
6	Nov. 13	2875, 2876, 2879, 2881-2885 (<mark>5</mark>)	Calibration with new HVs	col. 0-4 OFF	
					 Pass change
7	Nov. 15	2907, 2909-2919 (<mark>4</mark>)	Calibration with new HVs	col. 0-4 OFF —	 Comparison between
					4-pass and 5-pass

Elastic calibrations in 2024

- ➢Replacement with bypassed bases in column 0-19 are done during the Christmas break
- Calibrations are done with all columns

2024/07/18

➢ Refurbishment of the rest of columns without swapping PMTs

	Date	Runs used (pass of the beam)	Purpose	
8	Jan. 26	3883-3889 (<mark>5</mark>)	New HV settings	
9	Jan. 27	3893-3898 (<mark>5</mark>)	Calibration with new HVs	
10	Feb. 18	4469 <i>,</i> 4470 (<mark>5</mark>)	Only col. 10-29 are illuminated	 Refurbishment of col. 20-23 (Feb. 16) Bofurbishment of col. 24 25 (Feb. 22)
11	Mar. 10	5183-5207 (<mark>5</mark>)	New HV settings	• Refurbishment of col. 24-25 (Feb. 22)
12	Mar. 11	5217, 5219-5225 (<mark>3</mark>)	Calibration with old HVs	• Pass change
13	Mar. 12	5226-5236 (<mark>3</mark>)	Calibration with new HVs	 Comparison between 3 and 5-pass Befurbishment of col. 26-29 (Mar. 16)
14	Apr. 22	6151-6156 (<mark>3</mark>)	New HV settings (using new gain curve from Julie)	
15	Apr. 24	6171-6176 (<mark>4</mark>)	Calibration with old HVs	 Comparison between 3 and 4-pass
16	Apr. 24	6180-6183 (<mark>4</mark>)	Calibration with new HVs	

Effects of temperature on elastic calibration

Thermal sensor at middle column (back 25-32)

- Data from EPICS
- Reversed values due to the reversed wire connection (Fixed by Josh closed to the end of the experiment)

Results of calibration associated with temperature

- Higher temperature in the calorimeter reduces the light yield of the crystals
- First 6 runs
 - Taken right after turning on the HVs
 - Non-uniform calibration coefficients due to the nonsteady temperature in the calorimeter
- Last 6 runs
 - More uniform calibration coefficients after the temperature got more steady
- > Conclusion
 - Data for calibration and production should be taken after the temperature is steady

Calibration coefficients as a function of time

 \succ Distributions of coefficients from blocks in column 6-28 and row 1-34

 \succ Fit the distribution of coefficients to extract the mean value

Coefficients of elastic calibration #3

2024/07/18

Performance of π^0 calibration with simulation

 $M_{\gamma\gamma}$ (E₁ > 1 GeV && E₁ > 1 GeV)

Data

Fit (Gauss+pol1) $\chi^2/NDF = 9.31$

 $N_{\pi^0} = 22391 \pm 151$

 $M_{\pi^0} = 134.96 \pm 0.02 \text{ MeV}$

 $\times 10^{\circ}$

Simulation

Counts

6

➤MC data reconstructed using Geant4

- ~300k events of $\pi^0 \! \rightarrow \! \gamma \gamma$ were generated
- HMS momentum = -6.667 GeV/c, angle = 12.493 degree
- SHMS angle = 36.88 degree, NPS angle = 20.58 degree
- NPS at 3 meter (the first kinematic we took)

Required statistics for calibration

>20k of π⁰ events seems to be enough for calibration (0.5 hours of beam time with KinC_x36-5; 2-3 hours with x60-3 and x60-4 on LH2)

Calibration performance with 20k π^0 events

Number of photons per block with 20k π^0 events

Simulation

Number of hits block

																												L			J
35 F	105 0-	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1.
- I	10 20	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	 11
ŀ	-990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	
ŀ	-960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	
ŀ	-930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	
80 I	-900-	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	
Ť	-870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	
ŀ	-840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	
ŀ	-810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	
ŀ	-780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	
25 F	-750-	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	
.~ I	-720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	
ŀ	-690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	 4
ŀ	-660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	Ľ
ŀ	-630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	
'O I	-600-	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	
· ĭ	-570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	
ŀ	-540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	
ŀ	-510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	
ŀ	-480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	
5	-450-	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	
Ĭ	-4-20	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	
ŀ	-390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	
ŀ	-360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	
ŀ	-930	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	 1
0	-300-	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	
Ť	-270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	
ŀ	-240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	
ŀ	-210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	
ŀ	-180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	1
5	-1-50-	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	 1
Ť	-1-20	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	
ŀ	-90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	
ŀ	-60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	
ŀ		31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	
01		1	2	3	4	5	Ģ	7	Ş	9	10	1(1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	۱,
	0					5					10					15					20					25					
	•					-										. •										$\overline{\mathbf{c}}$	ميناد	<u></u>		hor	
																											Jun		ium	Dei	

Required statistics for calibration with data

➢Kinematics: KinC_x36-5

> Same conclusion as simulation: 20k of π^0 events may be enough

Results of calibration as a function of run number

- ➢ First month of data in 2024
- ▶8 kinematics, run 3728-4550
- > Calibrated using ~100k π^0 events
- Elastic calibration was done after taking 7 days of production data
- Decrease of coefficients after updating HVs and long time of beam OFF

If we didn't update HVs

Laboratoire de Physique des 2 Infinis

➢Restore to the old coefficients with

$$C_{old}^{k} = C_{new}^{k} \times \left(\frac{\mathrm{HV}_{new}}{\mathrm{HV}_{old}}\right)^{b}, b = 5.9$$

- Radiation damages of the crystal were saturated and increased steady after some point
- Cure of the crystals might be meaningless if the damages come back too fast

Comparison between different blocks

Conclusion

- > 16 elastic calibrations was done
- > HV settings were updated for 6 times to have uniform gain in each PMT for better trigger
- > Coefficients depend on the temperature. Keep HVs ON for data taking and calibration.
- \succ Study of performance of π^0 calibration was done using simulated data
- > 20k of pure π^0 events seems to be enough for calibration
- > The frequency of calibration depends on kinematics and beamtime
- $\succ \pi^0$ calibration were done for the 1st month of data in 2024
- Fast damage of crystals after the Christmas break.
 Would be interested to compare with the beginning of the experiment.

Backups

NPS calibration with cosmic rays

- >Check the performance after installation, troubleshooting, etc.
- ➢ Pre-calibration before calibrating with elastic data
 - Gain matching for similar amplitudes in each block
 - Amplitudes before & after calibration • $Amp. = \alpha \times HV^{\beta}$ Counts • new HV. = old HV × $\left(\frac{\text{new Amp.}}{\text{old Amp.}}\right)^{\frac{1}{\beta}}$ Before calibration • β = 5.77 50 After calibration New amplitudes are set to 10 mV 40⊢ Log(amplitude) (Log(mV) Log(amplitude)=-32.2+ 5.77*Log(HV) 30⊦ 5.5 20 10 4.5 4 From Julie's analysis 3.5 22 12 20 24 10 14 16 18 6.5 6.6 6.2 6.3 6.4 6.7 Pulse amplitude [mV] Log(HV) (Log(V))

Elastic calibration

- > Preparation of taking data of elastic events ($e + p \rightarrow e' + p'$)
 - Move the NPS to 9.5-meter position (coordinate with the Techs)
 - Change the polarity to detect scattered electron (e') in the NPS and recoil proton (p') in the HMS
 - Three different angles of the NPS are required to illuminate the whole calorimeter and have enough statistics at the edge

2024/07/18

Hao Huang @ NPS Collaboration Meeting

19/15

Calculation of calibration coefficients

Precise prediction of scattered electron from the measured proton in the HMS

≻Linear equations of 1080 crystals are used for the minimization:

• According to energy conservation, the energy E_i of scattered electron in event i is:

 $E_i = E_b + M_p - E_i^p$

where E_b is the beam energy, M_p is the mass of target proton, E_i^p is the energy of proton detected in the HMS

- By comparing E_i with $\Sigma_j C_j A_j^i$
 - $\circ \ \ C_j$ is the calibration coefficient of block j in the caloremeter
 - $\circ~A^i_j$ is the amplitude (deposited energy) if block j in event i we can build $\chi^2 = \Sigma_i (E_i \Sigma_j C_j A^i_j)^2$
- The calibration coefficient C_j can be calculated by minimizing the χ^2 : $\frac{\partial \chi^2}{\partial C_k} = -2C_k \Sigma_i (E_i - \Sigma_j C_j A_j^i) A_k^i = 0$

which can be witten as:

 $\Sigma_i E_i A_k^i = \Sigma_j [\Sigma_i A_j^i A_k^i] C_j$

- Then, C_j can be calculated by inverse the matrix $[\Sigma_i A^i_j A^i_k]$ and multiply $\Sigma_i E_i A^i_k$

Elastic calibration

Adjust the high voltage (HV) of PMTs to have 600 mV of amplitude for the photon from DVCS process

Based on the gain curve and their calibration coefficients

Results of elastic calibration

- Good agreement of the electron energy between the prediction from HMS and the measurement in NPS after calibration
- > The measured energy resolution is still larger than the expectation ($\sim 2\%/\sqrt{E} \oplus 1\% \sim 1.2\%$) from simulation (work ongoing)

Coefficients, sparse ON vs. OFF

Ratio of coefficients (spON / spOFF)

er	35	1050-	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1.5
ā		-000	001	0022	0023	00/	005	006	007	0020	000	1000	1001	1002	1000	1004	1035	1000	1007	1030	1009	1040	1041	1042	1043	1044	1045	1040	1047	1040	1049	
E		-960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	11
Ŋ		-930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	1.4
	3U	-966-	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	
ş	⁰⁰	-870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	
2		-840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	 1.3
ш.		-81 0	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	
		-780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	
	25	-750 -	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	 12
		-72 0	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	1.2
		-690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	
		-6 60	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	
	~~	-630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	1.1
	20	-600-	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	
		-5 70	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	
		-5 40	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	 1
		-510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	
	I	-480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	
	15	-450-	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	~ ~
		-420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	 0.9
		-390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	
		360	361	362	363	364	365	366	367	368	369	370	3/1	372	373	374	375	376	3/7	378	379	380	381	382	383	384	385	386	387	388	389	
	4 ~	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	355	357	358	359	 0.8
	10	-300-	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	0.0
		270	2/1	2/2	2/3	274	2/5	2/6	2//	2/8	2/9	280	281	282	283	284	285	280	287	288	289	290	291	292	293	294	295	296	297	298	299	
	[240	241	242	243	244	245	240	247	240	249	200	201	252	203	254	200	200	207	200	259	200	201	202	203	204	200	200	207	200	209	~ -
	[100	101	100	100	214	105	100	107	100	100	100	101	102	102	104	105	100	107	100	100	230	201	232	200	234	235	230	237	200	239	 0.7
	5	150	151	162	160	164	100	100	107	100	109	100	161	162	193	164	195	190	167	190	160	170	171	170	172	174	175	176	177	170	170	
	5	100	101	102	100	104	100	126	107	100	109	120	101	132	103	12/	105	126	107	120	120	1/0	1/1	1/2	1/3	1/4	1/5	1/6	147	1/0	1/9	
		-00	01	02	02	0/	05	06	07	00	00	100	101	102	102	104	105	106	107	100	100	110	141	142	140	144	145	116	117	110	110	90
			61	62	63	64	65	66	67	68	60	70	71	72	73	7/	75	76	77	79	70	80	81	82	92	84	85	86	87	99	80	0.0
		-20	21	32	22	34	35	36	37	38	30	40	11	12	13	14	45	16	47	48	/0	50	51	52	53	54	55	56	57	58	50	
	\cap	30	1	2	33	4	4	6	7	8	9	1h	1.1	10	13	14	16	16	1.7	1.8	10	20	21	20	23	24	25	26	27	28	20	~ -
		~		4	Y	7	-	4		Y	4	10		15			4 5			- P	- Y	00	41	<u>L¥</u>	- Lp	47	05	Lp	<u> </u>	Lp		0.5
		0					5					10					15					20					25					
																											Сс	olum	n n	um	ber	

2024/07/18

Comparison between different beam energy

➤Comparisons of coefficients with the same and updated HVs

>Very small discrepancies were found between different energies

Energy calibration with $\pi^{\rm 0}$

- >The energy in the NPS are shifted when taking production data
- Possible causes: fringe field effects from the magnet on PMTs, non-linear effects on the energy response of the calorimeter
- Calibration with $\pi^0 \rightarrow \gamma \gamma$ is another approach to extract the correct calibration coefficients in each crystal

2024/07/18

Method of π^0 calibration

- > The minimization method is based on the paper "A bootstrap method for gain calibration and resolution determination of a lead-glass calorimeter" (Nuclear Instruments and Methods in Physics Research A 566 (2006) 366–374)
- > This method is used to constrain the mean of π^0 invariant mass and reduce its width based on:

 \succ Iterations are required till the mean and width of π^0 are converged

Results of π^0 calibration

 \geq Mean value of π^0 mass is stable after 3 iterations

>At least 5 iterations are required to make its width stable

➢ Both mean and width are improved after calibration

Additional correction for π^0 calibration

>Used in previous DVCS experiment in Hall A for the fast darkening of crystals

