Overview and Use of SIMC

Dave Gaskell NPS Collaboration Meeting July 17-18, 2022

1

- 1. SIMC overview
- 2. Basics of using SIMC

What is SIMC?

SIMC is the standard Hall C Monte Carlo for coincidence reactions (similar to MCEEP) \rightarrow written in FORTRAN (now gfortran compatible ...)

Features:

son Lab

- → Optics (COSY) and "aperture checking" Monte Carlos of spectrometers [HMS, SOS, SHMS, HRS's, BigCal,...]
- \rightarrow Includes radiative effects, multiple scattering, ionization energy loss, particle decay
- \rightarrow Simple prescriptions available for FSIs, Coulomb Corrections, etc.

Reactions implemented:

- 1. Elastic and quasielastic \rightarrow H(e,e'p), A(e,e'p)
- 2. Exclusive pion production
 - → H(e,e' π^+)n, A(e,e' $\pi^{+/-}$) [quasifree or coherent]
- 3. Kaon electroproduction \rightarrow H(e,e'K⁺) Λ , Σ , A(e,e'K^{+/-})
- 4. H(e,e' $\pi^{+/-}$)X, D(e,e' $\pi^{+/-}$)X [semi-inclusive]
- 5. H(e,e'K^{+/-})X, D(e,e'K^{+/-})X [semi-inclusive]
- 6. $H(e,e'\rho \rightarrow \pi^+\pi^-)p$, $D(e,e'\rho \rightarrow \pi^+\pi^-)$ [diffractive ρ] 7. $H(e,e'\pi^0)p$, $D(e,e'\pi^0)p/n$, $(e,e'\pi^0)X$

Peter's updates underway

What SIMC is NOT...

SIMC is NOT a full detector response simulation a la GEANT

SIMC does NOT simulate a large class of processes simultaneously to generate backgrounds (like Pythia for example)

SIMC is not a generic event generator \rightarrow processes are generated over a limited phase space with the specific purpose of being "thrown" into a spectrometer

SIMC is not hard to modify \rightarrow if you want it to do something else (different cross section model, add new spectrometer, etc.) it is pretty easy to update + I can help

Overview

- Initialization
 - Choose reaction, final state (if appropriate)
 - Disable/enable implementation of (or correction for) raster, eloss ...
- Event generation
 - Select vertex based on target size, position, raster size, beam spot size
 - Determine energy, angle generation that will populate 100% of the acceptance (accounting for radiation, energy loss, ...)
- Physics Processes
 - Event-by-event multiple scattering, radiative corrections, particle decay, coulomb corrections
- Acceptance
 - Can apply geometric cuts or spectrometer model. Default spec. models include target/spec. offsets, model of magnetic elements, apertures at front, back, middle of magnets, collimators, detector active area
- Event Reconstruction
 - Tracks are fitted in the focal plane and reconstructed to the target. Apply (average) energy loss, fast raster corrections. Calculate physics quantities for Ntuple/Root tree

Example: Exclusive Pion Electroproduction

Initialize limits:

Generate vertex:

Generate scattering kinematics:

- H(e,e' π): Generate θ_e , ϕ_{e} , θ_{π} , ϕ_{π} , p_e calculate p_{π}
- D(e,e' π): Generate θ_{e} , ϕ_{e} , θ_{π} , ϕ_{π} , p_{e} , $\frac{\theta_{N}}{\phi_{N}}$, $p_{N} \rightarrow$ calculate p_{π}

Modifications to kinematics:

Follow particles:

Apply cross section weighting (use model for free proton/neutron in γ -N center of mass)

Simulate particle decay

 \rightarrow Decay the meson and follow the decay product(s)

Calculate Normalization Factors:

Bound nucleon momentum/direction

Spectrometer Models (HMS, SHMS, HRS ...)

- Magnetic elements simulated using COSY
- Real apertures
 - collimators, vacuum pipes
 - magnet apertures (front, middle, and back)
- Fiducial cuts for detectors (depends on analysis, trigger)
- Sequential transformations for magnetic elements, continuous drift for field free regions (important for decay)
- Reconstruct track
 - Use smeared position at drift chamber
 - Fit track at focal plane
 - Reconstruct to target using matrix elements fit from MC data
- Can easily disable spectrometer, apply geometric cuts, add new spectrometer/detector (for example, NPS)

Getting SIMC

https://github.com/JeffersonLab/simc_gfortran

 DeffersonLab / simc_gfortran Code O Issues 3 1% Pull requests 1 O Actions II 	Projects 🎞 Wiki 🛈 Security 🗠 Insights 🕸 Sett	Q Type [] to search + → ⊙ th ⊡ tigs
Simc_gfortran Public	🔊 Edit Pins 👻	ⓒ Unwatch 34 ▼ 😵 Fork 85 ▼ 🖧 Star 2 ▼
Your master branch isn't protected Protect this branch from force pushing or delemerging. <u>View documentation.</u>	etion, or require status checks before Protect thi	s branch × SIMC - Physics Monte Carlo for Hall C and Hall A
\$* 3 Branches ▷ 0 Tags \$* 3 Branches ▷ 0 Tags \$* 3 Branches ▷ 0 Tags \$* 3 Branches □ 1 Fagurat #56 from gaskalld	Q Go to file t) Add file -	Code → Code → Code of conduct
CTP benharsf calo	Update for RHEL9 Initial revision Initial revision	2 months ago ☆ 2 stars 16 years ago ☆ 34 watching 16 years ago ♀ 85 forks Report repository
 cern cosy cteq5 	Initial changes to remove cernlib dependency Update SHMS HB Changes in subdirectories for new gfortran treatment of	4 years ago 4 years ago 9 years ago No releases published Create a new release
documents f1f2tables fdss	Add pdf files More F1F2IN21-related work New SIDIS model from Peter Bosted	4 months ago 3 years ago 4 years ago 4 years ago
hms hrsl	Add simulation of pions in HMS/SHMS collimators	2 months ago Contributors 5 16 years ago 🔃 😜 🛞 🛞
 hrsr infiles outfiles 	Initial revision Add Delta final state for "exclusive" pion production: (e,e' Add subdirctories outfiles and worksim but have git ignor	16 years ago 4 years ago 11 years ago • Fortran 39.8% • PostScript 15.6%
Doltar	Changes in subdirectories for new ofortran treatment of	Image: Shell 14.8% C 14.0% 9 years and Earcy 5 2% Tay 3 0%

SIMC Basics

- Compiling: just type "make" in the main directory
- Important directories
 - infiles \rightarrow where the input files for your simulation live
 - worksim \rightarrow SIMC event-by-event output (root trees)
 - outfiles \rightarrow where the *.hist file lives \rightarrow need this for normfac
 - util \rightarrow "helper" applications to generate output
- Helper applications
 - SIMC default output is a FORTRAN binary file
 - Helper applications in util directory convert to root trees or paw ntuple
 - util/ntuple and util/root_tree → must be compiled separately
 - Choose appropriate Makefile (Makefile.rhel9 or Makefile.rhel7)

SIMC: structures \rightarrow derived types

• Long ago – had to convert from "structures" to "derived types"

type arm		
	sequence real*8	delta, yptar, xptar, z
end type		
type arm2	2	
	sequence	
	real*8	delta, yptar, xptar, z
end type		
type douł	ole_arm	
	sequence	
	type(arm)::e	
	type(arm2)::p	
end type		

SIMC RHEL9/Alma9 updates: derived types in modules

- First try to transition to Alma9 all the derived types were broken
- After lots of googling found a helpful web page that described the problem
- Compilers can handle derived types in 2 different ways
 - Name equivalence: two types are equal if they have the same name
 - Index equivalence: each time a type is declared/defined, it's given a unique index, even if they have the same name!
 - Old compiler used first option, new gfortran uses second
- How to fix/deal with this?
 - Put the derived types in a module and load the module in each relevant subroutine
 - All the derived types that were in "structures.inc" are now in "modules.f"

	MODULE structureModule ! Define some BASIC record structures and associated parameters
	! generic cut> initialized with MAX large and MIN small
	type cutstype
	sequence
	real*8 min, max
	end type cutstype
-	
4	arson i ab

In each relevant subroutine, added this statement:

SIMC Input File

; This is a CTP file

: 'TF' stands for 'this field' ; ONE equals TRUE unless specified otherwise

begin parm experiment

ngen = 10000	;	POS: # of successes; NEG: # of tries
EXPER%charge = 1.0	;	total charge (mC)
doing_phsp = 0	;	(ONE = TRUE) - If all of the doing_* are
doing_kaon = 0	;	(ONE = TRUE) false, then doing (e,e'p).
doing_pion = 0	;	(ONE = TRUE)
which_pion = 0	;	0=pi+, 1=pi-, 2=pi+ Delta, 3= pi-Delta
doing_delta = 0	;	pi+/pi- with Delta final stat
doing_rho = 0	;	diffractive rho production
doing_semi = 0	;	sidis
doing_hplus = 1	;	positve or negative hadrons for sidis
doing_decay = 0	;	1=decay ON, 0=decay OFF.
ctau = 780.4	;	decay length (cm)
use_benhar_sf = 0	;	Use Benhar style spectral function
transparency = 0.36	;	Proton transparency, when using benhar SF
end parm experiment	ĺ.	

begin parm kinematics_main

Ebeam = 10551.0	; (MeV)	
dEbeam = 0.05	; beam energy variation (%)	
electron_arm = 5	; 1=hms,2=sos,3=hrsr,4=hrsl,5=s	hms
hadron_arm = 1	; 1=hms,2=sos,3=hrsr,4=hrsl,5=s	hms
spec%e%P = 8000.0	; e arm central momentum (MeV/c)
spec%e%theta = 16.54	; e arm angle setting (degrees)	
spec%p%P = 4170.0	; p arm central momentum (MeV/c)
spec%p%theta = 29.37	; p arm angle setting (degrees)	
end parm kinematics_main		

```
begin parm target
```

```
targ%A = 1.0
 targ%Z = 1.0
 targ%mass_amu = 1.007276
 targ%mrec_amu = 0
 targ%rho = 0.07332
 targ%thick = 295.172
 targ%angle = 0.
 targ%abundancy = 100.
 targ%can = 3
end parm target
```

;	target	A
;	target	Z
;	target	mass in amu
;	recoil	mass in amu (eep=A-1 system,pion=A-2)
;	target	density (g/cm^3)
;	target	thick (mg/cm^2)
;	target	angle (for solid target) (degrees)
;	target	purity (%)
;	1=beer	can (fpi), 2=pudding can (nucpi) 3=12 GeV cel

```
begin parm e_arm_accept
 SPedge%e%delta%min = -10.0
                               : delta min (SPECTROMETER ACCEPTANCE!)
 SPedge%e%delta%max = 10.0
                               : delta max
 SPedge%e%yptar%min = -100.0
                               ; yptar min = {TF} / 1000 (mrad)
 SPedge%e%yptar%max = 100.0
                               ; yptar max = {TF} / 1000
 SPedge%e%xptar%min = -100.0
                               ; xptar min = {TF} / 1000 (mrad)
 SPedge%e%xptar%max = 100.0
                               ; xptar max = {TF} / 1000
end parm e_arm_accept
```

```
begin parm p_arm_accept
```

SPedge%p%delta%min = -15.0 ; delta min (SPECTROMETER ACCEPTANCE!) SPedge%p%delta%max = 30.0 delta max SPedge%p%yptar%min = -100.0 ; yptar min = {TF} / 1000 (mrad) SPedge%p%yptar%max = 100.0 ; yptar max = {TF} / 1000 SPedge%p%xptar%min = -100.0 ; xptar min = {TF} / 1000 (mrad) SPedge%p%xptar%max = 100.0 ; xptar max = {TF} / 1000 end parm p_arm_accept ; This is a CTP file

; 'TF' stands for 'this field' ; ONE equals TRUE unless specified otherwise

begin parm beamandtargetinfo

gen%xwid = 0.008868	; beam width - one sigma (cm) (89microns)
gen%ywid = 0.004235	; beam width - one sigma (cm) (42microns)
targ%fr_pattern = 3.	; raster pattern: 1=square, 2=circular 3=triangular
targ%fr1 = 0.1	; horizontal size OR inner radius(2)
targ%fr2 = 0.1	; vertical size OR outer radius(2)
targ%xoffset = 0.0	; target x-offset (cm): +x = beam right
targ%yoffset = 0.0	; target y-offset (cm): +y = up
targ%zoffset = 0.0	; target z-offset (cm): +z = downstream
	; zreal = znominal + zoffset

end parm beamandtergetinfo

;These are offsets applied before the call to the single arm montecarlos. ; Offsets are in spectrometer coordinate system. Positive xptar offset ; means spectrometer is positioned at large xptar (i.e. below target, and ; thus pointing above target and giving a negative shift to particle's xptar) begin parm spect_offset spec%e%offset%x = 0.; x offset (cm) spec%e%offset%y = 0. ; y offset (cm) spec%e%offset%z = 0. ; z offset (cm) spec%e%offset%xptar = 0. ; xptar offset (mr) !x(y)ptar is slope, so !it's really unitless. spec%e%offset%yptar = 0. ; yptar offset (mr) spec%p%offset%x = 0. ; x offset (cm) spec%p%offset%y = 0. ; y offset (cm) spec%p%offset%z = 0. ; z offset (cm) spec%p%offset%xptar = 0. ; xptar offset (mr) spec%p%offset%yptar = 0. ; yptar offset (mr) end parm spect_offset

SIMC Input File

These parameters should not change much in general

- → "using_Eloss" should always be on to simulate ionization energy loss, but "correct_Eloss" should be off since hcana does not apply a correction
- → Don't change the radiation flags, except maybe "one_tail" → might want to turn off proton radiation for neutral particles

begin parm simulate		
hard_cuts = 0	;	(ONE = TRUE) SPedge and Em.max are hard cuts(ntuple)
using_rad = 1	;	(ONE = TRUE)
use_expon = 0	;	(LEAVE AT 0)
one_tail = 0	;	0=all, 1=e, 2=e', 3=p, -3=all but p
intcor_mode = 1	;	(LEAVE AT 1)
spect_mode = 0	;	0=e+p arms, -1=p arm, -2=e arm only, 1=none
cuts%Em%min = 0.	;	(Em.min=Em.max=0.0 gives wide open cuts)
cuts%Em%max = 200.	;	Must be wider than cuts in analysis(elastic or e,e'p)
using_Eloss = 1	;	(ONE = TRUE)
correct_Eloss = 0	;	ONE = correct reconstructed events for eloss.
correct_raster = 1	;	ONE = Reconstruct events using 'raster' matrix elements.
mc_smear = 1	;	ONE = target & hut mult scatt AND DC smearing.
deForest_flag = 0	;	0=sigccl, l=sigcc2, -l=sigccl ONSHELL
rad_flag = 0	;	(radiative option #1see init.f)
extrad_flag = 2	;	(rad. option #2see init.f)
lambda(1) = 0.0	;	if rad_flag.eq.4 then lambda(1) = {TF}
lambda(2) = 0.0	;	if rad_flag.eq.4 then lambda(2) = {TF}
lambda(3) = 0.0	;	if rad_flag.eq.4 then lambda(3) = {TF}
Nntu = 1	;	ONE = generate ntuples
using_Coulomb = 1	;	(ONE = TRUE)
dE_edge_test = 0.	;	(move around energy edges)
use_offshell_rad = 1	;	(ONE = TRUE)
Egamma_gen_max = 0.	;	Set >0 to hardwire the Egamma limits.
end parm simulate		

Input File Notes

- Kinematics
 - Units are in MeV
 - No need to account for ionization energy loss that's in simulation
 - Include synchrotron energy loss in beam energy (if relevant)
 - If you find offsets to nominal kinematics in your analysis apply those to the SIMC kinematics → will impact the model cross section calculation
- Make sure to include contraction of target cell at low temperatures in target information
- Target info mixes units, density in g/cm³, but thickness in mg/cm²
- Generation volume: must be larger than nominal acceptance to get correct yield and cross sections. You can easily check in the *.hist file if the "found" values are too close to the generation limits
- Despite the names, "targ%yoffset" and "targ%xoffset" are beam position offsets

Running SIMC and Generating Output

[gaskelld@spoon] ./simc

- Create your input file: eep_example.inp
- run SIMC

Enter the input filename (assumed to be in infiles directory) eep example filename=infiles/eep example.inp Use random seed = Θ E bind = 0.000000000000000 MeV in limits init (QF only) ****----- H(e,e'p) -----**** SHMS is detecting electrons (SSA TUNE) HMS is detecting hadrons Welcome to Hall C++ at JLab12 - Get to work! NOTE: Will NOT be calculating Coulomb correction (default for Hydrogen target) NOTE: Will NOT correct reconstructed data for energy loss RANLUX LUXURY LEVEL SET BY RLUXGO : 3 P= 223 RANLUX INITIALIZED BY RLUXGO FROM DEFAULT SEED Initial random vector save to file: outfiles/eep_example_start random state.dat

Generating E	vent	1	Θ	successes	S 0	far	Monitor:	0.0000E+00	
Generating E	vent 10	001	35	successes	S0	far	- Monitor:	0.1446E+04	
Generating E	vent 20	001	66	successes	S 0	far	Monitor:	0.1239E+04	
Generating E	vent 3	001	99	successes	S 0	far	Monitor:	0.1161E+04	
Generating E	vent 4	001	122	successes	S 0	far	Monitor:	0.1118E+04	
Generating E	vent 5	001	148	successes	S 0	far	Monitor:	0.1083E+04	
Generating E	vent 20	001	673	successes	S 0	far	Monitor:	0.1258E+04	
Generating E	vent 40	001	1370	successes	S 0	far	• Monitor:	0.1270E+04	
Generating E	vent 60	001	1991	successes	S 0	far	Monitor:	0.1218E+04	
Generating E	vent 80	001	2662	successes	S 0	far	Monitor:	0.1223E+04	
Generating E	vent 100	001	3288	successes	S 0	far	- Monitor:	0.1209E+04	
Generating E	vent 120	001	3943	successes	S 0	far	Monitor:	0.1211E+04	
Generating E	vent 140	001	4582	successes	S 0	far	Monitor:	0.1206E+04	
Generating E	vent 160	001	5252	successes	S 0	far	Monitor:	0.1212E+04	
Generating E	vent 180	001	5924	successes	S 0	far	Monitor:	0.1217E+04	
Generating E	vent 200	001	6573	successes	S0	far	- Monitor:	0.1218E+04	
Generating E	vent 220	001	7233	successes	S 0	far	- Monitor:	0.1219E+04	
Generating E	vent 240	001	7896	successes	S 0	far	- Monitor:	0.1217E+04	
Generating E	vent 260	001	8579	successes	S0	far	- Monitor:	0.1223E+04	
Generating E	vent 280	001	9216	successes	S 0	far	Monitor:	0.1221E+04	
Generating E	vent 300	001	9844	successes	S 0	far	Monitor:	0.1216E+04	
> Last Ev	ent 304	183	10000	successes					
writing	outfiles/e	ep example.	aen						

Running SIMC and Generating Output

- Go to util/root_tree directory
- ./make_root_tree

[gaskelld	@ifarm2	2401.j	lab.org] /make_	root_tree	,			
Enter fi	lename	to co	onvert (without .	bin extes	sntion)			
eep_examp	file.	,			-la bia				
opening	Tile:		worksim,	/eep_exam	ple.bin				
Variable	s in ou	ιτρυτ	Tile:			ie alle alle alle alle alle alle	e alle alle alle alle alle alle a	de alle alle alle alle alle alle alle a	alle alle alle alle alle alle alle alle
*********				********	********	******	******	*******	*********
*Iree	:n10	:	n10				- 1	- ·	
*Entries	: 10	9000 :	Iotal =		1/91822	bytes	File	Size =	12/1418
*	:	:	Tree c	ompressio	n factor	= 1.	11		
******	******	*****	******	******	*******	*****	******	*****	*******
*Br 0	:hsdel1	ta :	Float_	t .					
*Entries	: 10	0000 :	Total	Size=	40730	bytes	File S	Size =	29353
*Baskets	:	1 :	Basket	Size=	32000	bytes	Compre	ession=	1.09
*									
*Br 1	:hsypta	ar :	Float_	t					
*Entries	: 10	0000	Total	Size=	40730	bytes	File 9	Size =	29418
*Baskets	:	1 :	Basket	Size=	32000	bytes	Compre	ession=	1.09
*									
*Br 2	:hsxpta	ar :	Float_	t					
*Entries	: 10	0000	Total	Size=	40730	bytes	File S	Size =	29630
*Baskets	:	1 :	Basket	Size=	32000	bytes	Compre	ession=	1.08
*									
*Br 3	:hsytar	r :	Float	t					
*Entries	: 10	0000 :	Total	Size=	40723	bytes	File 9	Size =	29670
*Baskets	:	1 :	Basket	Size=	32000	bytes	Compre	ession=	1.08
*									
*Br 4	:hsxfp		Float	t					
*Entries	: 10	0000	Total	Size=	40716	bytes	File S	Size =	29388
*Baskets	:	1 :	Basket	Size=	32000	bytes	Compre	ession=	1.09
*									
*Br 5	:hsxpfp		Float	t					
*Entries	: 10	0000 :	Total	Size=	40723	bytes	File S	Size =	29545
*Baskets	:	1 :	Basket	Size=	32000	bytes	Compre	ession=	1.08
*									
*Br 6	:hsvfp		Float	t					
*Entries	: 10	0000	Total	Size=	40716	bytes	File 9	Size =	29762
*Baskets	:	1	Basket	Size=	32000	bytes	Compre	ession=	1.08
*									
*Br 7	:hsvpfr		Float	t					
*Entries	: 10	0000	Total	Size=	40723	bytes	File 9	Size =	29644
*Baskets	-	1	Basket	Size=	32000	bytes	Compre	ession=	1.08
*									
*Br 8	:hsdelt	tai	Float	t					
*Entries	: 10	000	Total_	Size=	40737	bytes	File	Size =	29366
*Baskets		1	Basket	Size=	32000	hytes	Compre	assion-	1 69
*		1.	Susket	0120-	52000	5,005	compre	0001011-	1.05
*Br 0	hevet	ari .	Float	+					
*Entrice	. 10	0000	Total	Si70-	40727	hytos	File	sizo -	20412
*Packote	. 10	1 1	Packet	Size-	22000	bytes	Compre	accion-	1 00
* Daskets	•	т :	Basket	512e=	32000	bytes	compre	ession=	1.09
*Dr 10	theynt		Floot	 +					
*Entrino	insxpta	111 :	Total	Cizon	40727	hut a -	rile (20620
*Entries	. 10	9999	Deelect	Size=	40/3/	bytes	File S	size =	29636
►Baskets	:	1 :	Basket	Size=	32000	bytes	Compre	ession=	1.08
			c1						
(11 m 1 1	a la service se a			-					

Make some plots and get some yields

[gaskelld@spoon] root eep_example.root

| Welcome to R00T 6.30/06 https://root.cern | (c) 1995-2024, The R00T Team; conception: R. Brun, F. Rademakers | Built for linuxx8664gcc on Apr 25 2024, 00:00:00 | From heads/master@tags/v6-30-06 | With g++ (GCC) 11.4.1 20230605 (Red Hat 11.4.1-2) | Try '.help'/'.?', '.demo', '.license', '.credits', '.quit'/'.q'

root [0] Attaching file eep_example.root as _file0... (TFile *) 0x55b62e6f0d70 root [1] TCut icut="abs(hsdelta)<8 && ssdelta>-10 && ssdelta<22" (TCut &) Name: CUT Title: abs(hsdelta)<8 && ssdelta>-10 && ssdelta<22 root [2] h10->Draw("W",(icut)*"Weight*0.161960E+07/1000") Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name cl (long long) 7768 root [3] htemp->Integral() (double) 542.93752 root [4] ■

Normalized yield by applying "Weight" from tree

- → Includes cross section, radiative corrections, small jacobian
- \rightarrow What's this 0.161960E+07 thing?
 - \rightarrow "normfac" from eep_example.hist file
 - \rightarrow Includes target thickness, simulated charge,
 - generation volume

Jefferson Lab

 \rightarrow Also need to divide by number of events in tree

Result from this simulation (with these cuts) was: Yield = 542.9 counts/mC

Reconstructed Quantities in SIMC

- Calculation of reconstructed quantities (W, x, Q2, etc.) may not match how these quantities are calculated in hcana
 - Reconstruction was originally intended to match calculations in Hall C 6 GeV fortran analyzer
- Found to be a problem for H(e,e'p) analysis for KaonLT/PionLT → definitions of missing momentum components weren't even consistent
- Ideally, we should make calculations in simc match hcana
 - In the short term, should use stand-alone scripts to make comparable output
 - Richard Trotta has done this for H(e,e'p) and exclusive Kaon production:
 https://github.com/trottar/simc_gfortran/tree/fall_2023_kaon_xsects/recon_hcana

Updates for NPS

- Peter B. has done most of the work needed to make SIMC work for NPS
- Adding event generation for exclusive and semi-inclusive π^0 is straightforward \rightarrow same as π^+ and π^-
 - Additional complication is decay of π^0 into 2 photons (extra subroutine)
- DVCS event generation same as exclusive mesons, just changing mass to zero!
- Physics models needed for cross sections:
 - SIDIS $\pi^0 \rightarrow$ average of π^+ and π^-
 - Exclusive π^0
 - Large W (>2 GeV): Average of π^+ and π^- , removing pion pole contributions
 - Low W (<2 GeV): MAID model
- NPS calorimeter can just be an aperture for checking acceptance. Simple resolution smearing can be added later if desired
- I'm working on incorporating Peter's updates into the main branch on version on github

SIMC Summary

- SIMC is a pretty simple tool in many ways, but powerful
- If full GEANT4 simulations are needed (e.g. for NPS) SIMC can be combined with those simulations
 - SBS is doing this for d(e,e'N) simulations
- Main drawback is that it's fortran
 - Modern cross section models are usually in C++, etc.
 - Easy work-around is to use look-up tables → Peter has done this for the MAID model of pion electroproduction for example
- Peter has already implemented many of the needed updates, integration underway

