
1

Overview and Use of SIMC

Dave Gaskell
NPS Collaboration Meeting

July 17-18, 2022

1. SIMC overview
2. Basics of using SIMC

2

What is SIMC?
SIMC is the standard Hall C Monte Carlo for coincidence reactions (similar to MCEEP) à written in
FORTRAN (now gfortran compatible …)

Features:
 à Optics (COSY) and “aperture checking” Monte Carlos of spectrometers
 [HMS, SOS, SHMS, HRS’s, BigCal,…]
 à Includes radiative effects, multiple scattering, ionization energy loss, particle decay
 à Simple prescriptions available for FSIs, Coulomb Corrections, etc.

Reactions implemented:
1. Elastic and quasielastic à H(e,e’p), A(e,e’p)
2. Exclusive pion production

 à H(e,e’p+)n, A(e,e’p+/-) [quasifree or coherent]
3. Kaon electroproduction à H(e,e’K+)L,S, A(e,e’K+/-)
4. H(e,e’p+/-)X, D(e,e’p+/-)X [semi-inclusive]
5. H(e,e’K+/-)X, D(e,e’K+/-)X [semi-inclusive]
6. H(e,e’ràp+p-)p, D(e,e’ràp+p-) [diffractive r]
7. H(e,e’p0)p, D(e,e’p0)p/n, (e,e’p0)X Peter’s updates underway

3

What SIMC is NOT…
SIMC is NOT a full detector response simulation a la GEANT

SIMC does NOT simulate a large class of processes simultaneously to generate
backgrounds (like Pythia for example)

SIMC is not a generic event generator à processes are generated over a limited
phase space with the specific purpose of being “thrown” into a spectrometer

SIMC is not hard to modify à if you want it to do something else (different cross
section model, add new spectrometer, etc.) it is pretty easy to update + I can help

4

Overview
• Initialization

– Choose reaction, final state (if appropriate)
– Disable/enable implementation of (or correction for) raster, eloss …

• Event generation
– Select vertex based on target size, position, raster size, beam spot size
– Determine energy, angle generation that will populate 100% of the acceptance (accounting for

radiation, energy loss, …)
• Physics Processes

– Event-by-event multiple scattering, radiative corrections, particle decay, coulomb corrections
• Acceptance

– Can apply geometric cuts or spectrometer model. Default spec. models include target/spec. offsets,
model of magnetic elements, apertures at front, back, middle of magnets, collimators, detector
active area

• Event Reconstruction
– Tracks are fitted in the focal plane and reconstructed to the target. Apply (average) energy loss,

fast raster corrections. Calculate physics quantities for Ntuple/Root tree

5

Example: Exclusive Pion Electroproduction
Initialize limits:
Generate vertex:
Generate scattering kinematics:
 H(e,e’p): Generate qe, fe, qp, fp, pe – calculate pp
 D(e,e’p): Generate qe, fe, qp, fp, pe, qN fN, pN à calculate pp
Modifications to kinematics:
Follow particles:
 Apply cross section weighting (use model for free proton/neutron in g-N center

of mass)
 Simulate particle decay
 à Decay the meson and follow the decay product(s)
Calculate Normalization Factors:

Bound nucleon momentum/direction

6

Spectrometer Models (HMS, SHMS, HRS ...)
• Magnetic elements simulated using COSY
• Real apertures

– collimators, vacuum pipes
– magnet apertures (front, middle, and back)

• Fiducial cuts for detectors (depends on analysis, trigger)
• Sequential transformations for magnetic elements, continuous drift for field free regions

(important for decay)
• Reconstruct track

– Use smeared position at drift chamber
– Fit track at focal plane
– Reconstruct to target using matrix elements fit from MC data

• Can easily disable spectrometer, apply geometric cuts, add new spectrometer/detector (for
example, NPS)

7

Getting SIMC
https://github.com/JeffersonLab/simc_gfortran

8

SIMC Basics
• Compiling: just type “make” in the main directory
• Important directories

– infiles à where the input files for your simulation live
– worksim à SIMC event-by-event output (root trees)
– outfiles à where the *.hist file lives à need this for normfac
– util à “helper” applications to generate output

• Helper applications
– SIMC default output is a FORTRAN binary file
– Helper applications in util directory convert to root trees or paw ntuple
– util/ntuple and util/root_tree à must be compiled separately
– Choose appropriate Makefile (Makefile.rhel9 or Makefile.rhel7)

9

SIMC: structures à derived types
• Long ago – had to convert from “structures” to ”derived types”

structure /double_arm/
 structure /arm/ e
 real*8 delta, yptar, xptar, z
 end structure
 structure /arm2/ p
 real*8 delta, yptar, xptar, z
 end structure
end structure

Use as variables, like:
recon.e.delta
vertex.p.xptar

type arm
 sequence
 real*8 delta, yptar, xptar, z
end type

type arm2
 sequence
 real*8 delta, yptar, xptar, z
end type

type double_arm
 sequence
 type(arm)::e
 type(arm2)::p
end typeUse as variables, like:

recon%e%delta
vertex%p%xptar

10

SIMC RHEL9/Alma9 updates: derived types in modules
• First try to transition to Alma9 – all the derived types were broken
• After lots of googling found a helpful web page that described the problem

• Compilers can handle derived types in 2 different ways
• Name equivalence: two types are equal if they have the same name
• Index equivalence: each time a type is declared/defined, it’s given a unique index, even if they have

the same name!
• Old compiler used first option, new gfortran uses second

• How to fix/deal with this?
• Put the derived types in a module and load the module in each relevant subroutine
• All the derived types that were in “structures.inc” are now in “modules.f”

MODULE structureModule
! Define some BASIC record structures and associated parameters
! ... generic cut --> initialized with MAX large and MIN small
 type cutstype
 sequence
 real*8 min, max
 end type cutstype
…
…
…

In each relevant subroutine,
added this statement:

USE structureModule

11

SIMC Input File

12

SIMC Input File

These parameters should not
change much in general

à ”using_Eloss” should
always be on to simulate
ionization energy loss, but
“correct_Eloss” should be
off since hcana does not
apply a correction

à Don’t change the radiation
flags, except maybe
“one_tail” à might want to
turn off proton radiation for
neutral particles

13

Input File Notes
• Kinematics

– Units are in MeV
– No need to account for ionization energy loss – that’s in simulation
– Include synchrotron energy loss in beam energy (if relevant)
– If you find offsets to nominal kinematics in your analysis – apply those to the

SIMC kinematics à will impact the model cross section calculation
• Make sure to include contraction of target cell at low temperatures in target

information
• Target info mixes units, density in g/cm3, but thickness in mg/cm2

• Generation volume: must be larger than nominal acceptance to get correct yield and
cross sections. You can easily check in the *.hist file if the “found” values are too
close to the generation limits

• Despite the names, “targ%yoffset” and “targ%xoffset” are beam position offsets

14

Running SIMC and Generating Output

• Create your input file: eep_example.inp
• run SIMC

15

Running SIMC and Generating Output
• Go to util/root_tree directory
• ./make_root_tree

16

Make some plots and get some yields

Normalized yield by applying “Weight” from tree
à Includes cross section, radiative corrections, small

jacobian
à What’s this 0.161960E+07 thing?

à “normfac” from eep_example.hist file
à Includes target thickness, simulated charge,

generation volume

à Also need to divide by number of events in tree

Result from this simulation (with these cuts) was:
Yield = 542.9 counts/mC

17

Reconstructed Quantities in SIMC
• Calculation of reconstructed quantities (W, x, Q2, etc.) may not match how

these quantities are calculated in hcana
– Reconstruction was originally intended to match calculations in Hall C 6

GeV fortran analyzer
• Found to be a problem for H(e,e’p) analysis for KaonLT/PionLT à definitions

of missing momentum components weren’t even consistent
• Ideally, we should make calculations in simc match hcana

– In the short term, should use stand-alone scripts to make comparable
output

– Richard Trotta has done this for H(e,e’p) and exclusive Kaon production:
https://github.com/trottar/simc_gfortran/tree/fall_2023_kaon_xsects/recon_hcana

https://github.com/trottar/simc_gfortran/tree/fall_2023_kaon_xsects/recon_hcana

18

Updates for NPS
• Peter B. has done most of the work needed to make SIMC work for NPS
• Adding event generation for exclusive and semi-inclusive p0 is straightforward à

same as p+ and p-
– Additional complication is decay of p0 into 2 photons (extra subroutine)

• DVCS event generation same as exclusive mesons, just changing mass to zero!
• Physics models needed for cross sections:

– SIDIS p0 à average of p+ and p-
– Exclusive p0

• Large W (>2 GeV): Average of p+ and p-, removing pion pole contributions
• Low W (<2 GeV): MAID model

• NPS calorimeter can just be an aperture for checking acceptance. Simple
resolution smearing can be added later if desired

• I’m working on incorporating Peter’s updates into the main branch on version on
github

19

SIMC Summary
• SIMC is a pretty simple tool in many ways, but powerful
• If full GEANT4 simulations are needed (e.g. for NPS) SIMC can be combined

with those simulations
– SBS is doing this for d(e,e’N) simulations

• Main drawback is that it’s fortran
– Modern cross section models are usually in C++, etc.
– Easy work-around is to use look-up tables à Peter has done this for the

MAID model of pion electroproduction for example
• Peter has already implemented many of the needed updates, integration

underway

