Hall-B Run Group H CLAS12 Experiments with a Transversely Polarized Target

Contalbrigo Marco - INFN Ferrara

for RGH and CLAS Collaboration

Jefferson Lab PAC52, July 10 - 2024

Run Group H

PAC39 2012

Experiment	Contact	Title	Rating	PAC days
C12-11-111	M. Contalbrigo	Transverse spin effect in SIDIS at 11 GeV with a transversely polarized target using CLAS12	A	110
C12-12-009	H. <u>Avakian</u>	Measurement of <u>transversity</u> with di- hadron production in SIDIS with a transversely polarized target	A	110
C12-12-010	L. <u>Elauadrhiri</u>	Deeply Virtual Compton scattering at 11 GeV with transversely polarized target using the CLAS12 detector	A	110

C1 condition: "One <u>has to</u> achieve at least within a factor 2 the figure-of-merit determined by the target design value (I=1 nA, and 60% polarization) and a spin relaxation time of 50 days at 1 nA before the experiments with the transversally polarized target are approved".

All RGH experiments selected among the high impact JLab measurements PAC42 [2014]

RGH experiment status confirmed at PAC48 in 2020 (during jeopardy process)

Nucleon 3D Structure: SIDIS

$$\left\langle P_{h\perp}^{2}\right\rangle = z^{2}\left\langle k_{T}^{2}\right\rangle + \left\langle p_{T}^{2}\right\rangle$$

ATLAS++ [arXiv:1701.07240]

 80370 ± 7 (stat.) m_W = ± 11 (exp. syst.) $\pm 14 \pmod{\text{syst.}}$ +9 / -6 (TMDs) MeV A. Bacchetta++ [arXiv:1807.02101]

The Sivers Function

Quark distribution imbalance connected to orbital angular momentum and FSI

$$f_1(x,k_T^2;Q^2) - \frac{k_x}{M}f_{1T}^{\perp}(x,k_T^2;Q^2)$$

A. Bacchetta++ [arXiv: 2004.14278]

The Collins Spin-Orbit Effect

Transversity

Collins (TMDs)

Di-hadron (Collinear)

Tensor Charge

Fundamental quantity connected with BSM phsyics: tensor coupling beyond V-A & EDM violating T and CP Growing interplay with lattice calculations

Adapted from D. Pitonyak @ QCD Evolution 24

-1

-0.5

0.5

0 x

Nucleon 3D: DVCS

Information on the real and imaginary part of the QCD scattering amplitude

Access to elusive E_p GPD

OAM $L_q = J_q - \frac{1}{2}\Delta\Sigma$ via Ji sum rule

$$J_{q} = \lim_{t \to 0} \int_{-1}^{1} dx \, x \Big[H_{q}(x,\xi,t) + E_{q}(x,\xi,t) \Big]$$

Run Group H

Large acceptance spectrometer. Operative since 02/18

Features: wide phase space cover, excellent PID and statistics optimized for a multi-D analysis

- disentangle kinematical correlations
- verify expected dependences (e.g. in Q²) and isolate peculiar regimes (e.g. in z)
- study transition regions (e.g. in $\mathsf{P}_{\mathsf{T}})$

Multidimensional, high precision measurements of beam single spin asymmetries in semi-inclusive π^+ electroproduction off protons in the valence region

Sensitive to TMDs and the strong-force correlations within the nucleon

With respect the past: - extended range in the valence region well inside the DIS regime

- superior statistics instrumental for multidimensional study
- comparable wide coverage in z and $\ensuremath{\mathsf{P}_{\mathsf{T}}}$

CLAS12 Highlights: Di-hadron SIDIS

Observation of Beam Spin Asymmetries in the Process $ep \rightarrow e'\pi^+\pi^- X$ with CLAS12

Sensitive to TMDs and the strong-force correlations in hadron formation

With respect the past:

- extended range in the valence region well inside the DIS regime
 - superior statistics instrumental for multidimensional study
 - large acceptance for elusive correlations

CLAS12 Highlights: DVCS

First CLAS12 measurement of DVCS beam-spin asymmetries in the extended valence region

Sensitive to GPDs and the 3D structure of the nucleon

With respect the past: - extended range in the valence region well inside the DIS regime

- superior statistics instrumental for multidimensional study & model assessment

RGH Particle ID

Semi-inclusive physics with unprecedented coverage of valence & flavor sensitivity

RGH Target

HDice R&D did not achieve RGH specifications

Most viable solution to prioritize physics vs R&D

Consolidated NH₃ technology

Designed based on already successful realizations

Hall-A G2p-Gep target(copy optimized for HTCC)Hall-C E12-15-005 magnet(copy optimized for recoil detection)

Acceptance:

 $\pm 25^{\circ}$ horizontal

 \pm 60° horizontal

RGH Beam Line

RGH Background

RGH solution is most viable and superior to the conditionally approved one by PAC

Better than approved FoM (forward phase-space is basically untouched)

Example 1: π^0 provides clean probe minor VM and γ_L contribution Example 2: di-hadron provides collinear benchmark validation of TMD formalism

RGH Recoil Detector

Spatial resolution O(100 μ m) with μ -Rwell tecnologyunder development for the CLAS12 high-lumi project

Time resolution O(100 ps) with scintillating fiber tagger in synergy with other (EIC) projects

Recoil Reconstruction

Simulated RGH recoil resolution

based on ongoing tech. development

and CLAS12 FD tracking resolution

RGH DVCS Projections

Conclusions

RGH team is working hard to make high impact RGH experiments a reality

Experiment	Contact	Title	Rating	PAC days
C12-11-111	M. Contalbrigo	Transverse spin effect in SIDIS at 11 GeV with a transversely polarized target using CLAS12	А	110
C12-12-009	H. Avakian	Measurement of transversity with di-hadron production in SIDIS with a transversely polarized target	A	110
C12-12-010	L. Elauadrhiri	Deeply Virtual Compton scattering at 11 GeV with transversely polarized target using the CLAS12 detector	A	110

Important progresses since the original approval:

Science: [aramount case with novel lattice inputs but awaiting data

CLAS12: up and running with RICH, ideal for SIDIS and exclusive channels

Target: viable solution better than the PAC condition for approval

We request the PAC to confirm the conditionally approved beam time (110 days)

Systematic Uncertainty

C12-11-111 single hadron		Error source	Systematic error (%)	
		D background	4	
		Target polarization P_T	4	
		Acceptance corrections	4	
		Al background contribution	3	
C12-12-010 single hadron		Radiative corrections	2	
	J.	Total	~ 7	
Error source	Systematic error (%)			
D background	4			
Target polarization P_T	4			
acceptance corrections	5			
Al background contribution	3			
Radiative corrections	2	Error source	Systematic error (%)	
Total	~ 8	D background	3	
		Target polarization, P_t	4	
		Acceptance corrections	5	
		Al background contribution	2	
		π^0 contamination	2	

C12-12-009 di-hadron

Radiative corrections

Total

3

 ~ 8

RGH Target

Viable solution to prioritize physics vs R&D

Consolidated NH₃ technology Based on already successful target and magnet realizations

Recoil Reconstruction

Extended source 2 x 1.5cm².

With extended recoil detector

With time information

Baseline CLAS12

-		
Capability	Quantity	Status
Coverage	Tracks (FD)	$5^{\circ} < \theta < 35^{\circ}$
& Efficiency	Tracks (CD)	$35^\circ < \theta < 125^\circ$
	Momentum (FD & CD)	p > 0.2 GeV
	Photon angle (FD)	$5^{\circ} < \theta < 35^{\circ}$
	Photon angle (FT)	$2.5^{\circ} < \theta < 4.5^{\circ}$
	Electron detection (HTCC)	$5^{\circ} < \theta < 35^{\circ}, \ 0^{\circ} < \phi < 360^{\circ}$
	Efficiency	$\eta > 99\%$
	Neutron detection (FD)	$5^{\circ} < \theta < 35^{\circ}$
	Efficiency	≤ 75%
	Neutron detection (CD)	$35^\circ < \theta < 125^\circ$
	Efficiency	10%
	Neutron Detection (BAND)	$155^\circ < \theta < 175^\circ$
	Efficiency	35%
Resolution	Momentum (FD)	$\sigma_p/p = 0.5 - 1.5\%$
	Momentum (CD)	$\sigma_p/p < 5\%$
	Pol. angles (FD)	$\sigma_{\theta} = 1-2 \text{ mrad}$
	Pol. angles (CD)	$\sigma_{\theta} = 2-5 \text{ mrad}$
	Azim. angles (FD)	$\sigma_{\phi} < 2 \text{mrad/sin} \theta$
	Azim. angles (CD)	$\sigma_{\phi} = 3-15 \text{ mrad}$
	Timing (FD)	$\sigma_T = 60 - 110 \text{ ps}$
	Timing (CD)	$\sigma_T = 80 - 100 \text{ ps}$
	Energy (σ_E/E) (FD)	$0.1/\sqrt{E \text{ (GeV)}}$
	Energy (σ_E/E) (FT)	$0.03/\sqrt{E \text{ (GeV)}}$

