First Look at MVT High Voltage Tables and RG-D Data

CLAS Collaboration Meeting

June 26th, 2024

Suman Shrestha

Temple University

Suman Shrestha

Outlines

- 1. Semi-inclusive Deep Inelastic Scattering
- 2. **RG-D** Target Configuration
- 3. Micromegas Vertex Tracker (MVT)
 - I. Why MVT?
 - II. Geometry
 - III. Working Principle
- 4. Issues with BMT and FMT
- 5. High Voltage (HV) Table
 - I. Why HV table?
 - II. Procedure to create HV table
 - III. Locations for HV Table
- 6. Summary and Outlook
- 7. Acknowledgement

Semi-inclusive Deep Inelastic Scattering

\checkmark We consider the SIDIS process

 $e(l) + N(P) \rightarrow e(l') + h(P_h) + X,$

- Using RG-D data
- Interested hadron : π^- , or charged Kaons
- Measuring asymmetries : $\cos \phi$, $\sin \phi$, and $\cos 2\phi$
- Exploring nuclear TMDs
- ✓ Kinematic variables :

$$q = l - l', \ Q^2 = -q^2, \ x_B = \frac{Q^2}{2P \cdot q}, \ y = \frac{P \cdot q}{P \cdot l}, \ z = \frac{P \cdot P_h}{P \cdot q}$$

RG-D Target Configuration

- Nuclear targets : LD2, Carbon (C), Copper (Cu), and Tin (Sn)
- Used cuts: 3σ cuts on Transverse vertex Vx & Vy, then Vz to select each solid-foil peak
- Developing analysis tools
- Involved in Service Work

z-vertex distribution for the CuSn solid-foil setup

Micromegas Vertex Tracker (MVT)

I. Why MVT?

To improve the vertex and polar angle resolution

II. Geometry:

Barrel Micromegas Tracker (BMT in blue) and Forward Micromegas Tracker (FMT @ downstream right-end) form MVT.

- 6 cylindrical layers of BMT: 3 Z strips, 3 C strips.
- 6 Micromegas disks of FMT.
 - ✓ However, only 3 disks were used in RG-D.

III. Working Principle:

Micromegas detector

- **Ionization:** Charged particles ionize gas molecules in the conversion gap.
- Electron Drift: Electrons drift towards the micromesh.
- **Amplification:** Accelerated electrons create an electromagnetic shower.
- **Signal Collection:** Signals are collected by the readout strips.

Issues with BMT and FMT

High voltage (HV) operational stability

Some MVT detectors

- could not operate at HV settings (especially with nuclear targets)
- failed on strip and drift voltages
- operated at reduced HV or were turned off in recent years

(HV was lowered for the sensors to run stable and avoid tripping)

Consequences of lowering HV:

- Lower Strip Voltage:
 - Results in lower hit efficiency
 - Affects track reconstruction
- Lower Drift Voltage:
 - Results in larger cluster sizes in BMT-Z tiles due to larger Lorentz angle
 - Affects residuals
- ✓ Modified BMT gas setup improved stability and hit efficiency significantly
- Ongoing activity in Saclay: manufacturing more spare detectors for future CLAS12 experiments

MVT HV Table

Why HV Table?

To Track Hardware Status:

- Monitor the operational state of Micromegas detectors
- Identify functional and non-functional detectors

To Match MVT Acceptance with GEant4 Monte-Carlo (GEMC):

- Ensure simulations only include operational detectors
- Exclude non-operational detectors to match real experimental conditions.

To Match Hit Efficiency with GEMC:

- Adjust simulated hit efficiency based on strip voltages. However, using HV tables to match GEMC detector hit efficiency has some limitations; thus, will be substituted by data-based hit efficiency tables
- Reflect real performance characteristics in simulated data

Workflow for HV Table Creation

Procedure Followed Creating HV Table:

- Extracting HV values from the MYA DB and detecting changes in the values;
- Creating the HV tables in (sector, layer, component, and HV) format;
- Validate the table with the MYA stripchart plot;
- Uploading HV tables to the calibration constants database (CCDB)

Reconstruction Code:

- Reads HV tables;
- Excludes detectors with strip HV below the 1st threshold (HV1);
- Simulates lower hit efficiency for voltages between 2nd (HV2) and 3rd thresholds (HV3)

Sector	Layer	Component	HV
1	1	0	450.0
1	2	0	440.0
1	3	0	439.9
1	5	0	0.0
1	6	0	459.7

	sector	layer	component	HV1	HV2	HV3
1	1	0	400.0	450.0	470.0	
1	2	0	420.0	450.0	470.0	
1	3	0	430.0	480.0	500.0	
1	4	0	380.0	440.0	460.0	
1	5	0	420.0	450.0	470.0	
1	6	0	430.0	470.0	490.0	

Locations for HV Thresholds and Tables

BMT:

Strip HV Thresholds:

/calibration/mvt/bmt_strip_voltage_thresholds

Strip HV Tables:

/calibration/mvt/bmt_strip_voltage

Drift HV Tables:

/calibration/mvt/bmt_voltage

FMT:

Strip HV Thresholds:

/calibration/mvt/fmt_strip_voltage_thresholds

Strip HV Tables:

/calibration/mvt/fmt_voltage_strip_inout

Drift HV Tables:

/calibration/mvt/fmt_voltage_drift

□ □ □ calibration ? ± ⊂ cnd ? ⊞ ⊆ ftof ? 🗄 🗀 ctof ? '**⊡** ec ? the htcc ? 🖻 🧀 dc \, ? ⊞ itcc ? ≞ ⊆ svt ? ⊞ <mark>⊡ ft</mark> ? 🖻 🗀 eb ? ⊕ i bmt_hv ? 🗄 🗀 fmt hv 🕐 lorentz ? 🖻 bmt status ? 💼 fmt status ? 🖻 fmt time ? 🖻 bmt time ? 🖻 bmt voltage ? 🖻 bmt strip voltage ? bmt_strip_voltage_thresholds ? fmt_strip_voltage_thresholds ? fmt voltage ? 🖻 fmt strip voltage ? 🖻 fmt_voltage_drift ? fmt voltage_strip ? 🖻 fmt voltage strip inout ?

Analysis Work:

- Measure asymmetries and explore nuclear TMDs using the SIDIS process using RG-D data
 - ✓ Developing analysis tools

Importance of HV Tables:

- Crucial for accurate hardware monitoring and simulation
- Code Development and Debugging:
 - Finalize and test the new hit efficiency calculation code

Acknowledgement

Thank K

Suman Shrestha