Study of ρ^0 Photoproduction off of Protons in CLAS6

Florida International University Department of Physics and Astronomy

Brandon Tumeo Advisor: Dr. Lei Guo June 25, 2024

Introduction

Vector meson production typically studied using differential cross sections

Low -t:

• Experimental data has shown $d\sigma/dt$ exhibits exponential behavior in the forward region ($\theta^{CM} < 90^{\circ}$); modeled by versions of Regge theory

High -t, high s:

- Behavior of $d\sigma/dt$ for V-production at $\theta^{\rm CM}\approx 90^\circ$ is predicted by Constituent Counting Rules

Regge Theory

Expect $d\sigma/dt \sim e^{-B(s)|t|}$ for small |t|

t-slope B(s) is sensitive to exchanged particles (from Regge theory) $\begin{aligned} &\alpha(t) = \alpha(0) + \alpha`|t| \to \text{spin of exchanged particle (Reggeon)} \\ &B(s) = 2\alpha`\ln(s/s_0) \to \text{t-slope} \end{aligned}$

Basic Regge Theory

Expect $d\sigma/dt \sim e^{-B(s)|t|}$ for small |t|

t-slope B(s) is sensitive to exchanged particles (from Regge theory) $\alpha(t) = \alpha(0) + \alpha |t| \rightarrow \text{spin of Reggeon}$

 $B(s) = 2\alpha \ln(s/s_0) \rightarrow t\text{-slope}$

Plot pulled from (M. Battaglieri et al. 2001) [3]

Constituent Counting Rule

At $\theta^{\rm CM}\approx 90^\circ,\,d\sigma/dt\sim s^{\text{-(n-2)}}$

n: total number of elementary fields

For $\gamma p \rightarrow Vp$, $n = 1+3+2+3 = 9 \rightarrow d\sigma/dt \sim s^{-7}$

Constituent Counting Rule

At $\theta^{\rm CM}\approx 90^\circ,\,d\sigma/dt\sim s^{\text{-(n-2)}}$

n: total number of elementary fields

For $\gamma p \rightarrow Vp$, $N = 1+3+2+3 = 9 \rightarrow d\sigma/dt \sim s^{-7}$

Naive CCR inconsistent with vector meson photoproduction experimental data:

– ρ : s⁻⁸ (M. Battaglieri *et al.* 2001)

- ω:

s^{-7.2} (M. Battaglieri *et al.* 2003) s^{-9.4} (B. Dey 2014) s^{-9.08} (T. Reed *et. al.* 2020) φ: s⁻¹² (B. Dey 2014)

From (B. Dey 2014) [5]

Objectives:

Extract $d\sigma/dt$ for $\gamma p \rightarrow \rho^0 p$ using CLAS6 g12 data

- Low -t: estimate B=B(s): $d\sigma/dt \sim e^{-B(s)|t|}$ for small |t|
- High -t, s: estimate $\mathbf{n} \leftarrow d\sigma/dt|_{90^{\circ}}$ vs. s ~ s⁻⁽ⁿ⁻²⁾

π Id. / Reaction Selection

$$\begin{split} \gamma + p &\to p + \pi^+ + (\pi^-) \\ \text{Missing } P_{p\pi+} &= P_{\text{beam}} + P_{\text{target}} - P_p - P_{\pi+} \\ (\text{Missing } P_{p\pi+})^2 &\to \text{MM}^2_{p\pi+} \\ \text{Keep } \text{MM}^2_{p\pi+} \text{ events between -0.1 and 0.15 } \text{GeV}^2/\text{c}^4 \end{split}$$

Yield Estimation

Differential Cross Section

Differential Cross Section

Summary and Outlook

- Need many more simulated events
 - larger -t range
 - $p\rho^0 \rightarrow efficiency$
 - $\pi\Delta(1232) \rightarrow background$
- Get covariance matrices
 - Kinematic fitting (better π id)
- Uncertainties
 - Statistical
 - Systematic