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Why are we doing this?
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Why?

• Information from hadron data is limited by incomplete and potentially inconsistent 
datasets.

• Hadronic data often is for different observables and comes from different experiments. 

• Often these datasets can be sparsely populated in kinematic regions of interest.

• This fit can prove difficult to accurately constrain when using different observables 
measured at different kinematic variables.

• Ideally, a process which can reliably provide a value and associated uncertainty at any 
given kinematic variable should be used. This can be achieved using machine learning. 
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What can machine learning do?

• A Gaussian Process (GP) can be used to predict the mean and standard deviation of 
other, unknown, datapoints.

• This can be used to build a more consistent, accurate and complete dataset.

• Datasets from different experiments of the same variable can be compared and checked 
using some statistical measures.

• The GP could provide significantly improved datasets which theorists can use to test 
models and check for significant areas of divergence between the GP fit and theoretical 
models.
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How does it work?
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Mathematical Process I

Assume that we have n known datapoints of the form Ԧ𝑥𝑖 , 𝑦𝑖  with known errors 𝑒𝑖 used to 
define the expression form Ԧ𝑦 = 𝑓 𝑋 .

Assume that Ԧ𝑦 is drawn from a Multivariate Gaussian of the form 𝑝 Ԧ𝑦 𝑋 ∼ 𝒩 0, 𝐾 , 
where 𝐾 = 𝜅(𝑋, 𝑋) +  Ԧ𝑒2𝐼𝑛 is the n x n covariance matrix and κ is some kernel function 
that is used to measure the covariance. Here 𝐾𝑎𝑏 = κ Ԧ𝑥𝑎, Ԧ𝑥𝑏 + 𝛿𝑎𝑏𝑒𝑎

2, where Ԧ𝑥𝑎, Ԧ𝑥𝑏  are 
rows of the matrix 𝑋. 
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Mathematical Process II

Assume that there are m known datapoints of the form outlined previously, with known 
𝑥∗𝑖with unknown scalars 𝑦∗𝑖

,  which are correlated to the n known datapoints. 

A matrix 𝑋∗ can then be generated whose rows are the vectors 𝑥∗. 

As 𝑦∗ is correlated to Ԧ𝑦, they are drawn from the same multivariate Gaussian:

Ԧ𝑦

𝑦∗
∼ 𝒩 0,

𝐾 𝐾∗

𝐾∗
𝑇 𝐾∗∗

 

where 𝐾∗ = κ 𝑋, 𝑋∗ , 𝐾∗∗ = κ 𝑋∗, 𝑋∗ .
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Mathematical Process III

By using the conditional of a multivariate Gaussian, a prediction for 𝑦∗ can be obtained:

𝑝 𝑦∗ 𝑋∗, 𝑋, Ԧ𝑦 ∼ 𝑁 𝜇∗, 𝛴∗  where 

    𝜇∗ = 𝐾∗
𝑇𝐾−1 Ԧ𝑦

     Σ∗ = 𝐾∗∗ − 𝐾∗
𝑇𝐾−1𝐾∗

Thus, the GP now has a prediction for the mean and covariance matrix, and thus the 
standard deviation, of 𝑦∗. 5
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Example
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How do we know it works?
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Pseudodata

We can test the GP using some suitable pseudodata. Thus, define a 2D surface of the form, 
modelled on polarisation observables:

𝑦𝑓𝑢𝑛𝑐 = 𝑓 𝐸𝛾 , cos θ = 

𝑙=0

𝑛

𝑐𝑙 ∗ 𝑔𝑙 𝐸𝛾 ∗ 𝑃𝑙(cos θ) 

With 

• 𝑐𝑙  𝜖 −1,1  is some weight

• 𝑔𝑙 𝐸𝛾 ∼𝒩 𝜇𝑙 , 𝜎2
𝑙

• 𝑃𝑙(cos θ) is an ordinary Legendre polynomial 

In our case n=3 so we have 12 parameters. 

Note also that 𝑦𝑓𝑢𝑛𝑐 ≤ 1.
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Radial Basis Function Kernel 

Various kernels can be used depending on the desired output, e.g. smoothness, periodicity, 
etc. Here the simplest kernel, the radial basis function (RBF), is tested:

𝜅 𝑎, 𝑏 = exp 

𝑖=0

𝑝−1
−𝑑(𝑎𝑖 , 𝑏𝑖)2

2𝑙𝑖
2

Where:
• 𝑎, 𝑏 are some vectors of length p (e.g. have p parameters)

• 𝑑(∙,∙) is the Euclidean distance.

• 𝑙 is a hyperparameter called the length scale. For this kernel, it is a measure of how smooth the 
function is. 
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Convex Hull 

• It was found in testing that the GP performs well at interpolating but not at 
extrapolating. 

• As such a set of discrete points of the convex hull1 of the known datapoints is the space 
that the GP gives a prediction for (with resolution in each dimension chosen by the user). 
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3 Tests

We can perform 3 tests on the pseudodata output to check the GP is performing as 
intended:

• Unbiased Pulls

• Number of points in different confidence intervals

• Unbiased Pull of Fitted coefficients 
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Unbiased Pull

• Calculate pull: 𝑝𝑢𝑙𝑙 =
𝑦𝑓𝑢𝑛𝑐−𝑦𝑓𝑖𝑡

𝑒𝑓𝑖𝑡

• For each surface, check the pull distribution mean and variance, which should be 0 and 1, 
respectively. 

• Check the pull distribution of the GP fit at the same energies and angles as the “known” 
datapoints.

• Calculate the mean and variance of both pull distributions for every generating surface.
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Unbiased Pull
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Mean of 0

Gaussian centred at 0

Gaussian centred at 1

Repeat over 1000 
different surfaces 

Variance of 1
Repeat over 1000 
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Unbiased Pull
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Points within confidence intervals 

• Calculate pull: 𝑝𝑢𝑙𝑙 =
𝑦𝑓𝑢𝑛𝑐−𝑦𝑓𝑖𝑡

𝑒𝑓𝑖𝑡

• 𝑝𝑢𝑙𝑙 ≤ 1 ⟹ 𝑦𝑓𝑢𝑛𝑐 ϵ 𝑦𝑓𝑖𝑡 − 𝑒𝑓𝑖𝑡 , 𝑦𝑓𝑖𝑡 + 𝑒𝑓𝑖𝑡 , i.e., the predicted point is within its 
uncertainty of the actual point. 

• From this the total percentage of points within different confidence intervals can be 
calculated by scaling 𝑒𝑓𝑖𝑡 as required and repeat. 
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Points within confidence intervals 

Confidence interval Expected percentage of 
points within confidence 

interval (%) 

Mean percentage of 
points within confidence 

interval (%) 

0.67σ 50 84.5

1σ 68.3 94.6

1.96σ 95 99.7
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Fitting Parameters 

The functional form of the 2D surface can be fitted to some datapoints, using a least 
squares method, shown below:
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Fitting Parameters 

A Gaussian Process fit is then performed on the same datapoints:
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Fitting Parameters 

The GP datapoints are used to fit the functional form of the 2D surface:
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Fitting Parameters 

This can be further verified by finding the pull distribution of each of the surface 
coefficients which should be Gaussians centred at 0 with width 1. An example of one 
coefficient, 𝜇3, is shown below:
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What does real data look 
like?
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Data from CLAS

The GP has been used on data recently submitted for publication by the CLAS collaboration 
at Jefferson Lab, specifically 5 polarisation observables (Σ, P, T, Ox and Oz) of the K0Σ+ 
reaction.2 Example plots for Σ:
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GP 1D Projections for Σ
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GP 1D Projections for Σ
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What are the next steps?
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Comparing Datasets

• Additional work is also ongoing to develop a methodology to check the consistency 
between different datasets of the same variable. 

• This will enable theorists to use an expanded datasets to test theories, build more 
rigorous models, etc. 
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Expanding to Higher Dimensions

• Testing is underway to expand the GP to higher dimensions, ensuring it still passes the 3 
tests shown here. 

• Current testing is in 5 dimensions, based on data of Deeply Virtual Compton Scattering 
(DVCS) of the pion, but other physics quantities are planned. 
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Conclusion

• A Gaussian Process is an extremely useful machine learning tool to expand existing, 
limited datasets, requiring only 3 simple assumptions to operate. 

• The GP has been demonstrated to work on pseudodata modelled on 2D polarisation 
observables. 

• Work is ongoing to expand to other physics quantities and to higher dimensions 
(particularly DVCS of pions in 5D) and to develop a metric for testing if 2 datasets are 
consistent with one another. 
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Thanks for listening 
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Generating Pseudodata I

A generated asymmetry datapoint is based on the effective number of counts measured. 
This can be expressed as

𝐴 =
𝑁+ − 𝑁−

𝑁+ + 𝑁−

where 𝑁+, 𝑁− are used to describe the 2 different states which are used to estimate the 
effective count. These take into account beam polarisation, recoils, target dilution and 
other such factors. These random variables are generated from “true” values:

𝑁~Pois 𝑛±

where 𝑛± =
1

2
𝑛𝑒 1 ± 𝑓 𝑤, cos 𝜃 . Here 𝑛𝑒  is defined as the effective number of events 

and is in the range [200,1000] which is estimated based on real data. 
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Generating Pseudodata II

By using standard propagation of errors, the error on A is given by:

𝛿𝐴 =
2

𝑁+ + 𝑁−
2

𝑁+𝑁− 𝑁+ + 𝑁−
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Length Scale Calculation - Energy

The mean distance between adjacent measured energy levels. This is mathematically 
expressed as (assuming n measured energy levels):

𝐿𝐸𝛾
=

1

𝑛 − 1


𝑗=1

𝑛−1

𝑒𝑗−1 − 𝑒𝑗
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Length Scale Calculation - Angle

For each measured energy level calculate the mean distance between adjacent measured, 
degenerate datapoints. Take the resulting mean of these values. This is expressed 
mathematically as (where 𝑚𝑗  is the number of datapoints measured at the j-th energy 
level):

𝐿cos 𝜃 =
1

𝑛


𝑗=1

𝑛
1

𝑚𝑗 − 1


𝑖=1

𝑚𝑗−1

𝑎𝑗,𝑖+1 − 𝑎𝑗,𝑖
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Resolution Choice

Any “reasonable” choice of resolution for a given dimension is acceptable. Specifically, 
assume that 𝐷 is the set of all measured points in a given dimension and 𝑅 is the 
resolution of this dimension, then mathematically:

∀𝑑1, 𝑑2 ∈ 𝐷, ∃ 𝑧 ∈ ℤ 𝑠. 𝑡. 
𝑑1 − 𝑑2 = 𝑧𝑅 

Or equivalently:
∀𝑑 ∈ 𝐷, ∃ 𝑧 ∈ ℤ 𝑠. 𝑡.
min 𝐷 − 𝑑 = 𝑧𝑅
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Coefficient Mean of
pull 
distribution
from known
datapoints
fit

Variance of
pull 
distribution
from known
datapoints
fit

Mean of
pull 
distribution
from GP
datapoints
fit

Variance of
pull 
distribution
from GP
datapoints
fit

𝑐0 0.04 0.91 0.06 0.92

𝜇0 -0.04 0.82 -0.05 0.84

𝜎0
2 0.0 0.77 -0.01 0.79

𝑐1 0.04 0.89 0.04 0.91

𝜇1 -0.03 0.74 -0.02 0.73

𝜎1
2 -0.1 0.77 -0.09 0.78

𝑐2 -0.06 1.01 -0.06 1.05

𝜇2 -0.05 0.73 -0.05 0.75

𝜎2
2 -0.17 0.82 -0.17 0.83

𝑐3 -0.06 0.95 -0.07 0.96

𝜇3 -0.02 0.73 -0.04 0.74

𝜎3
2 -0.07 0.73 -0.07 0.76
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