

Neutron DVCS Cross Section Extraction at the CLAS12 Experiment

Li XU

CLAS Collaboration Meeting

Jun 26, 2024

Outline

- Motivation
- Data and MC samples
- PID and fiducial cuts
- Select neutron DVCS (nDVCS) data
- Distributions of nDVCS variables
- Study of π^0 production contamination
- Next to do

Motivation

- The study of multi-dimensional partonic structure of nucleons can provide important information to probe non-perturbative QCD
- Generalized Parton Distributions (GPDs) relate transverse position of partons to longitudinal momentum
- The Deeply Virtual Compton Scattering (DVCS) is one of the cleanest channels to access GPDs
- The measurement of DVCS cross-section from the neutron can provide unique information on GPDs

Data and MC samples

- Data
 - RGB pass2 data, collected by the CLAS12 detector in 2019 spring and 2020 spring
 - 10.6/10.4/10.2 GeV electron beam scattering off an unpolarized liquid deuterium target
- MC
 - 100M DVCS events (nDVCS: 23M events)

Configuration	rgb_spring2019	Software Ver.	gemc/5.4 coatjava/10.0.2
MC Gen Ver.	2.33	Magnetic Field	tor-1.00_sol-1.00
Generator	genepi	Bkg merging	50nA_10599MeV
Target Position	-3.0 cm	Target Length	5 cm
Generator Opt.	EBeam 10.6process 0 targ_A 2targ_Z 1		

PID and fiducial cuts

Select nDVCS data

- Select events with at least one electron, one neutron and one photon
 - For cases with more than one combination, select the one with the smallest χ^2 -like quantity (defined using exclusivity variables that peak at zero)
- Reaction kinematics: $Q^2 > 1 \text{ GeV}^2$, W > 2 GeV, $t > -1.9 \text{ GeV}^2$
- Apply pre-selection on missing m_X^2 and p_X of $ed \rightarrow en\gamma X$
 - To reduce events from other channels mostly
 - Pre-selection: $-0.5 < m_X^2 < 3 \text{ GeV}^2$, $0 < p_X < 1.5 \text{ GeV}$

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- CD&FT (*n* in CD & γ in FT)

-2

Events

50

40

30

20 E

10F

Events

 $\times 10$

 m_X^2

-0.5

70 F

60

50

40

30 E

20 E

10

- $\Delta \phi$: difference in ϕ between
 - hadronic plane formed by the neutron and the virtual photon
 - hadronic plane formed by the ٠ neutron and the outgoing photon
- Δt : difference in *t* between
 - *t* calculated by the neutron
 - *t* calculated by the photon

Other topologies (CD&FD, FD&FT, FD&FD) are presented in backup slides

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- CD&FT (*n* in CD & γ in FT)

• $\theta_{X\gamma}$: cone angle formed by the missing photon X ($en \rightarrow enX$) and the outgoing photon γ

- After the exclusivity selection
 - $N = 4.11 \times 10^5$ for CD&FT
 - $N = 0.85 \times 10^5$ for CD&FD

• The data and MC distributions are very different

0.5

 mainly due to the protons that are misidentified as neutrons, discussed in the later slides

Proton misidentified as neutron in CD

- The tracking system (CVT) in CD has dead or low-efficiency regions
- Protons: no tracks in CVT but hits in CND

Misidentified as neutrons

• Reproduce distributions in MC mixing pDVCS and nDVCS (both reconstructed as nDVCS)

TMVA training

- Training and test sample:
 - MC with pure neutron target
 - MC with pure proton target
- Training variables (only use info at CTOF, CVT and CND)
 - Number of clusters at CTOF (most distinguishable)
 - Smallest cone angle between the CTOF cluster and n(p) track
 - Number of tracks at CVT
 - Smallest cone angle between the CVT track and n(p) track

TMVA training

• Number of hits for the n(p) cluster at CTOF and three layers of CND

• Deposit energy at CTOF and three layers of CND

Boosted Decision Tree (BDT) classifier

- Selection:
 - BDT response > 0.05 (to be tuned)
- $N = 4.96 \times 10^5$ for n in CD (CD&FT + CD&FD)
- $N = 1.43 \times 10^5$ after the BDT response selection

Distributions of nDVCS variables

- Remain backgrounds:
 - Proton misidentified as neutron
 - Mostly reduced by BDT
 - π^0 production contamination
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - Mainly for γ in FD
 - π^0 MC: 45M events reconstructed as DVCS

Distributions of nDVCS variables

- Need more π^0 MC to study the π^0 production contamination
- The difference between data and MC is also due to their different resolution
- The study of other topologies (FD&FT, FD&FD) is ongoing

Raw beam-spin asymmetry as a check

$$BSA = \frac{1}{P} \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

- *P* is the average beam polarization
- N^+ is the nDVCS yield for positive helicity
- N^+ is the nDVCS yield for negative helicity
- Extract BSA using nDVCS events
 - only for *n* in CD
 - after the BDT response selection
 - π^0 production contamination remains
- The BSA has the expected sinusoidal shape, and its amplitude is on the order of a few percent
 - consistent with the recent CLAS12 measurement

Study of π^0 production contamination

• $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$ background subtraction:

•
$$N_{\text{DVCS}} = N_{\text{en}\gamma} - N_{en\pi^0} \times f^{\text{MC}} = N_{\text{en}\gamma} - N_{en\pi^0} \times \frac{N_{en\pi^0(1\gamma)}^{\text{MC}}}{N_{en\pi^0(2\gamma)}^{\text{MC}}}$$

- Select π^0 production data
 - PID and fiducial cuts:
 - $p_e > 1 \text{ GeV}, p_n > 0.3 \text{ GeV}, p_{\gamma} > 0.3 \text{ GeV}$
 - Same fiducial cuts for the nDVCS selection
 - Select events with at least one electron, one neutron and two photons with $0 < m_{\gamma\gamma} < 0.28 \text{ GeV}$
 - For cases with more than one combination, select the one with the smallest χ^2 -like quantity (defined using exclusivity variables that peak at zero)

..MC

- Reaction kinematics:
 - + $Q^2 > 1 \text{ GeV}^2$, W > 2 GeV, $t > -1.9 \text{ GeV}^2$
- Pre-selection before determining the exclusivity cuts:
 - $-0.5 < m_X^2 < 3 \text{ GeV}^2$, $0 < p_X < 1.5 \text{ GeV}$ for $ed \rightarrow en\gamma\gamma X$

Partially reconstructed $en\pi^0(1\gamma)$ and passed DVCS selection

en $\pi^{0}(2\gamma)$ Fully reconstructed $en\pi^{0}(2\gamma)$ and passed π^{0} production selection

Exclusivity selection of π^0 production

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- π^0 production MC
 - 45M events, but not enough to get the distribution for all topologies
 - Need more MC to tune the selection criteria

Exclusivity selection of π^0 production

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- π^0 production MC
 - 45M events, but not enough to get the distribution for all topologies
 - Need more MC to tune the selection criteria

CD&2FD: still have fake neutrons

Exclusivity selection of π^0 production

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- π^0 production MC
 - 45M events, but not enough to get the distribution for all topologies
 - Need more MC to tune the selection criteria

Distributions of π^0 production variables

- CD&2FD: n in CD and 2 γ in FD
 - After the exclusivity slection, still have protons misidentified as neutrons
 - Apply the BDT cut

Distributions of π^0 production variables

- CD&2FD: *n* in CD and 2 γ in FD
- The difference between data and MC maybe is due to their different resolution
- Maybe need momentum correction
- Need more MC to tune the selection criteria and study all topologies

— MC (scaled)

- Data

1.5

-MC (scaled)

21

— Data

Next to do

- Study of other topologies (FD&FT, FD&FD) for DVCS
- Tune the selection criteria for π^0 production
- Subtract π^0 production background
- Determine the acceptance
- Extract the integrated luminosity
- Estimate the systematic uncertainties

Thank you!

Backup slides

Electron selection

- *q* = -1
- pid = 11
- $p_e > 1 \,\,{\rm GeV}$
- Reconstructed in FD
- Fiducial cut
 - PCAL: lv > 14 and lw > 14
 - DC: region 1-3
 edge > 6

Photon selection

- q = 0
- pid = 22
- $p_{\gamma} > 2 \text{ GeV}$
- Reconstructed in FT
 - Fiducial cut $x^2 + y^2 > 72$
- Reconstructed in FD
 - Fiducial cut (PCAL) lv > 14 and lw > 14

Neutron selection

- q = 0
- pid = 2112
- $p_n > 0.3 \text{ GeV}$
- Reconstructed in FD
 - Remove misidentified e^- , $\gamma = \theta_{en} > 12^\circ$ and $\theta_{\gamma n} > 7^\circ$
 - Fiducial cut
 lv > 14 and lw > 14
 for PCAL or ECin or ECout
- Reconstructed in CD
 - Fiducial cut $40^{\circ} < \theta_n < 150^{\circ}$

The data and MC distributions are different because MC is nDVCS while data contains lots of channels at this stage.

Pre-selection on missing m_X^2 and p_X of $ed \rightarrow en\gamma X$

CD&FT

CD&FD

FD&FT

FD&FD

Particle kinematics after the selection

• CD&FT (n in CD & γ in FT)

Particle kinematics after the selection

• CD&FD (n in CD & γ in FD)

Distributions of nDVCS variables for CD&FT

- Remain backgrounds:
 - Proton misidentified as neutron
 - Mostly reduced by BDT
 - π^0 production contamination
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - Mainly for γ in FD

Distributions of nDVCS variables for CD&FT

- Remain backgrounds:
 - Proton misidentified as neutron
 - Mostly reduced by BDT
 - π^0 production contamination
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - Mainly for γ in FD

Distributions of nDVCS variables for CD&FT

- Remain backgrounds:
 - Proton misidentified as neutron
 - Mostly reduced by BDT
 - π^0 production contamination
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - Mainly for γ in FD

Distributions of nDVCS variables for CD&FD

- Remain backgrounds:
 - Proton misidentified as neutron
 - Mostly reduced by BDT
 - π^0 production contamination
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - Mainly for γ in FD

Distributions of nDVCS variables for CD&FD

- Remain backgrounds:
 - Proton misidentified as neutron
 - Mostly reduced by BDT
 - π^0 production contamination
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - Mainly for γ in FD

Distributions of nDVCS variables for CD&FD

- Remain backgrounds:
 - Proton misidentified as neutron
 - Mostly reduced by BDT
 - π^0 production contamination
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - Mainly for γ in FD

Exclusivity selection for FD&2FD

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- π^0 production MC
 - 45M events, but not enough to get the distribution for all topologies
 - Need more MC to tune the selection criteria

Exclusivity selection for FD&2FD

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- π^0 production MC
 - 45M events, but not enough to get the distribution for all topologies
 - Need more MC to tune the selection criteria

Exclusivity selection for FD&2FD

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- π^0 production MC
 - 45M events, but not enough to get the distribution for all topologies
 - Need more MC to tune the selection criteria

Distributions of π^0 production for FD&2FD

Distributions of π^0 production for FD&2FD

Distributions of π^0 production for CD&2FD

Distributions of π^0 production for CD&2FD

