

<u>⟨Ů</u>⟩ ODU

BONuS12 Analysis Status Report

M. Hattawy Old Dominion University

(On behalf of the CLAS Collaboration)

- Physics Motivations.
- Experimental Setup.
- Status of Data Analysis.
- Conclusions.

BONuS12: Spectator Tagging of Barely Off-Shell Neutrons in D(e, e`p_s)X

- DIS experiments have provided precise measurements on F₂^p, F₂^d up to fairly large x, but less precision on F₂ⁿ specially at large x, where the theoretical modules have different predictions.
- F₂ⁿ is obtained from measurements on bound neutrons, but F₂ⁿ extraction at large x introduces theoretical model dependence on nuclear corrections (Fermi motion, nucleon off-shell corrections, FSI, .
- **BONuS12** constrains the nuclear uncertainties by using the **Spectator Tagging** technique, where correcting the neutron's kinematics implemented by measuring the spectator-proton results in improved resolution and constrains the kinematics of the knocked initial neutron to the phase-space where the nuclear uncertainties are minimized.

ODU

$$W^{*2} \approx M^{*2} - Q^2 + 2M\nu (2 - \alpha_s)$$

 $M^{*2} = (M_d - E_s)^2 - \vec{p}_s^2 \quad \alpha_s = \frac{E_s - p_{s_{||}}}{M_s}$

BONuS12 Nuclear Uncertainties

С

Final State Interactions:

- Struck neutron interacts with the spectator p.
- Proton momentum is enhanced.
- FSIs are small at low p_s and large θ_{pq} .

<u>Target Fragmentation:</u>

- e n \rightarrow e p X (where n $\rightarrow \pi^{-}$ p) and
 - e p \rightarrow e p X (where p $\rightarrow \pi^0$ p).
- TF enhances the proton yield only at forward angles ($\cos\theta_{pq} > 0.6$).

Off-Shell Corrections:

- Less than 2% in our region.

Overall systematic uncertainties will be less than 6%

F_2^n/F_2^p Extraction Method

$$\underline{\underline{D}(e, e')X} \qquad R_{\text{inc}}(x, Q^2) = \frac{Y_{\text{inc}}^{\text{Data}}}{Y_{\text{inc}}^{\text{MC}}} \propto \frac{F_{2d}^{\text{true}}(x, Q^2)}{F_{2d}^{\text{Gen}}(x, Q^2)} \qquad Y_{\text{inc}}^{\text{Data}}(x, Q^2) \sim \mathcal{L} \cdot \Lambda(x, Q^2) \cdot \eta(x, Q^2) \cdot \Delta\sigma_{\text{inc}}(x, Q^2)} \\ \underline{\underline{D}(e, e'p_s)X} \qquad R_{\text{tag}}(x', Q^2) = \frac{Y_{\text{tag}}^{\text{Data}}}{Y_{\text{tag}}^{\text{MC}}} \propto \frac{F_{2d}^{\text{true}}(x', Q^2)}{F_{2n}^{\text{Gen}}(x', Q^2)} \qquad With the assumption that \Delta\sigma \propto F_{2d}} \\ SR = \frac{R_{\text{tag}}(x', Q^2)}{R_{\text{inc}}(x, Q^2)} = \frac{\left(Y_{\text{tag}}^{\text{Data}} / Y_{\text{tag}}^{\text{MC}}\right)}{\left(Y_{\text{inc}}^{\text{Data}} / Y_{\text{inc}}^{\text{Data}}\right)} = Constant \cdot \left(\frac{F_{2n}}{F_{2d}}\right)^{\text{true}}}{\left(\frac{F_{2n}}{F_{2d}}\right)^{\text{true}}} = Constant \cdot \left(\frac{F_{2n}}{F_{2d}}\right)^{\text{Gen}}} \\ \left(\frac{F_{2n}}{F_{2d}}\right)^{\text{true}} = Constant \cdot \left(\frac{F_{2n}}{F_{2d}}\right)^{\text{Gen}} * \frac{\left(Y_{\text{Data}}^{\text{Data}} / Y_{\text{inc}}^{\text{Data}}\right)}{\left(Y_{\text{tag}}^{\text{MC}} / Y_{\text{inc}}^{\text{MC}}\right)} \\ \left(\frac{F_{2n}}{F_{2d}}\right)^{\text{true}} = \left(\frac{F_{2n}}{F_{2d}}\right)^{\text{true}} * \left(\frac{F_{2d}}{F_{2d}}\right)^{\text{fit}} \qquad \& \qquad \frac{d}{d} \approx \frac{4F_{2n}/F_{2p}-1}{4-F_{2n}/F_{2p}} \\ \end{array}$$

$$\int^{\text{true}} = \left(\frac{F_{2n}}{F_{2d}}\right)^{\text{true}} * \left(\frac{F_{2d}}{F_{2p}}\right)^{\text{fit}} \& \frac{d}{u} \approx \frac{4F_{2d}}{4}$$

<u>ش</u> ODU

4

BONuS12 Experimental Setup

Overview	DC	ETOE
Solenoid		
Beamline		
НТСС		PCAL/FC
	Torus	
Click on	ļ	
boxes jor injo		

Beam Energy	Target	Spring 2020	Summer 2020
1 Pass Data	H2	81M	185M
	D2	37M	45M
	4He	19M	44M
	Empty	1M	22M
	Total	138M	296M
5 Pass Data	H2	151M	266M
	D2	2275M	2355M
	4He	77M	51M
	Empty	21M	45M
	Total	2524M	2717M

February – March 2020 | MEDCON6 | August-September 2020

2.1 GeV Calibration Data

<u>رن</u> ODU

BONuS12 RTPC Resolutions

2.14 GeV e- beam on ⁴He target

<u>⟨Ů</u>⟩ ODU

BONuS12 RTPC Detection Efficiency

2.14 GeV e- beam on ⁴He target

ODU

nDIS Events Selection @10.4 GeV

e- @10.4 GeV beam on D_2 target

All Negative Tracks, nphe > 2 and SF > 0.2

Electron selection cuts

- PID = 11
- nphe > 2
- $E_{tot}/p > 0.2$
- $EC_{in} > 10 \text{ MeV}$
- $E_{PCal} > 100 \text{ MeV}$
- DC fiducial cuts
- E' > 2 GeV

Additional DIS cuts

- W > 1.8 GeV
- $Q^2 > 1.0 \text{ GeV}^2$

nDIS Events Selection @10.4 GeV

Proton Selection on D₂ target

RTPC track quality cuts:

- The radius of curvature of tracks (< 0)
- Cut on χ^2 of helix fitter (< 5)
- Number of hits in a track (> 10)
- Cut on the maximum radius (67-72) mm
- Fiducial cut (vz: (-210, 180)mm)

Coincidence cuts

• Vertex coincidence cuts

Timing coincidence

PID Cuts:

• Cuts on dEdx vs. p/q band for proton selection

DIS & VIP cuts

- W* > 1.8 GeV
- 0.07
- $\cos(\theta_{pq}) < -0.3$

Run/File Data Evaluation & Selection (1/2)

 Selected based on the normalized electron yield per beam-charge, which is expected to be stable for same the same run conditions.

Run/File Data Evaluation & Selection (2/2)

Data/MC Electron's Resolutions (1\2)

• Observed electron's E and θ resolutions from **Real Data** using the ep elastic events

心 ODU

Data/MC Electron's Resolutions (2\2)

• Observed electron's E and θ resolutions from **GEMC** using the MC ep elastic events @ 10 GeV

(İ)

ODU

• MC resolutions after applying an ad-hoc smearing to the electron's E & θ :

14

Data/MC Comparison: D(e,e')X

- Improved RTPC in GEMC for RG-F.
- Generator: An extension version from previous Bonus experiment that accommodates the higher beam energy.

Inclusive e⁻ kinematics

Data/MC Comparison: D(e,e'p_s)X

Tagged nDIS e⁻ kinematics

ODU

16

Data/MC Comparison: D(e,e'p_s)X

p_s kinematics

ODU

17

Data/MC Yield Ratios

Super Ratios

Q²-Integrated Results

Ongoing Systematic Uncertainties

Systematics studies are done by varying the different cuts and calculate the super-ratio fraction change bin-by-bin:

• Beam Energy.

(İ)

ODU

- Pair-Symmetric background correction.
- RTPC accidental background.
- RTPC fiducial cut.
- Electron-proton vertex correspondence.
- Electron-proton timing cut.
- Helium Conatmination correction.

Other Physics Topics Accessible with BONuS12

In addition to measuring \mathbf{F}_2^{n} , the **BONuS12 dataset** is a golden dataset to study:

- → Exclusive nDVCS $e^- D \rightarrow e^- n \gamma p$
- → Tagged-p nDVCS $e^{-} D \rightarrow e^{-} p \gamma (n)$
- → Neutron Elastic Scattering
- → Coherent DVCS off D
- → Coherent DVMP off D
- → Semi-inclusive reaction p(e,e`p)X
- \rightarrow D(e, e'pp_s)X

(())

ODU

- → EMC effect in D
- → SIDIS on the neutron
- → Diffractive scattering off D

- More Physics:
 DVCS off bound nucleons.
 - DVMP off bound nucleons.
 - The role of the final state interaction in hadronization and medium modified fragmentation functions.
 - The medium modification of the transverse momentum dependent parton distributions.
 - ... and more

Conclusions

♦ **BONuS12** extends the measurement of the **spectator-tagged neutron structure functions** over a **larger kinematic range**, with much improved statistics. Many additional physics topics can be explored.

◊ Particles identification has been carried out and tuned over the **Summer2020** dataset.

♦ Golden Runs/Files have been identified.

Event generator / simulation have been tuned and reproducing the measured phasespace.

♦ **First results** have been extracted and will be submitted in days to the DPWG for an analysis review.