RG-M Analysis Update

Andrew Denniston (MIT)

Overview

- Run Group M Introduction
- Low Level Analysis
- Physics Analyses
 - Short Range Correlations (SRCs)
 - Electrons for Neutrinos (e4v)

RG-M Experiment at CLAS12

- November 2021 February 2022
- Fully cooked production runs
- 2, 4, and 6 Gev Beam Energies
- H, D, He, C, 40Ca, 48Ca, Ar, and Sn

RGM Tasks

- Cook luminosity scans and empty target runs.
- Recover collected charge for H, D, and He targets.

Particle ID for Electrons in 6 GeV data

Particle ID for Protons in 6 GeV data

Particle ID for 6 GeV data

RG-M Analysis Note: 6 GeV electron proton selection and Particle ID

Andrew Denniston¹, Justin Estee¹, Julian Kahlbow¹, and Erin Marshall Seroka²

¹Department of Physics, Massachusetts Institute of Technology ²Department of Physics, The George Washington University

Particle ID for Neutrons in 6 GeV data

- Received extensive comments on machine learning neutron algorithm in analysis note.
- We have new personnel addressing our neutron algorithm.

Run Group-M Proposals

- (e,e') inclusive
- (e,e'N)
- (e,e'NN)

Short range, short lived, highly correlated pairs

High relative momentum Low center of mass momentum

k-space

SRCs Goals with CLAS

- Compare old CLAS6 results with RGM results (30X the statistics).
- Verify that our observables are probe independent.
- Determine how SRCs are formed.

SRC Cuts

- x_B > 1.3
- Q² > 1.5
- p_{lead} > 1 GeV/c
- 0.8 GeV/c² < M_{miss} < Cut(x_B , p_{miss})
- 0.4 GeV/c < p_{miss} < 1.0 GeV/c
- |p|/|q| < 0.96

Derived From the CLAS6 Analysis Cuts:

- Physics Letters B 722 (2013) 63–68
- Science 346, 614 (2014)
- Nature 560, 617–621 (2018)
- Physics Letters B 797 (2019) 134792
- Cohen et al. Phys. Rev. Lett. 121, 092501 2018
- Duer et al. Phys. Rev. Lett. 122, 172502 2019

Center of Mass Motion

600

CLAS6 Data

• Cohen, PRL (2018)

SRCs Goals with CLAS

- Compare old CLAS6 results with RGM results (30X the statistics).
- Verify that our observables are probe independent.
- Determine how SRCs are formed.

Measuring SRC Probe (In)dependence

Measuring SRC Probe (In)dependence

SRCs Goals with CLAS

- Compare old CLAS6 results with RGM results (30X the statistics).
- Verify that our observables are probe independent.
- Determine how SRCs are formed.

Zn Zn Zn Zn Zn Zn Zn Zn Cu Cu Cu Cu Cu Cu Cu Cu Cu Z=28 Ni Ni Ni Ni Ni Ni Ni Co Fe Mn + 6 protons Mn Cr v v v v ν Ti Ti Ti Ti Ti TÎ Tİ Tİ Ti Ti Ti Ti Ti Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc ⁴⁸Ca Z=20 Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca к Ar ⁴⁰Ca ⁴⁸Ca + 8 neutrons

N=28

- (e,e')
- (e,e'p) ---- Ha
 - Hall C experiment 2022, under analysis: ⁴⁰Ca, ⁴⁸Ca, ⁵⁴Fe, ¹⁹⁷Au

- (e,e'n)
- (e,e'pp)
- (e,e'pn)

- (e,e')
- (e,e'p) Hall C experiment 2022, under analysis: ⁴⁰Ca, ⁴⁸Ca, ⁵⁴Fe, ¹⁹⁷Au
- (e,e'n)
- (e,e'pp) Hall B RG-M experiment 2021/22, under analysis: ⁴⁰Ca, ⁴⁸Ca, ¹²⁰Sn, ...
- (e,e'pn)

SRC selection: (e,e´p) in Ca Data-Sim comparison

Data SRC Simulation (w/ bckgr merging) Very good Agreement with SRC Simulation

Advantages:

- informs on impact of nuclear structure
- many systematic effects cancel (ϵ)

$$Ratio = \frac{yield_A/(N \cdot \rho_A)/T_A \cdot A \cdot a}{yield_{40Ca}/(N \cdot \rho_{40Ca})/T_{40Ca} \cdot A_{40Ca} \cdot a} \rightarrow \text{per nuc}$$

> per nucleus yield ratio

- *N*: norm (~ beam charge)
- ϱ : area density
- → luminosity normalization
- T: transparency
- ϵ : detector efficiency

Electrons for Neutrinos

Electrons for Neutrinos (Argon inclusive)

Normalization to Cross-Section:

• What is in an Unnormalized bin?

$$\text{Bin Value} = \int_{Run-Time} \left\{ \int_{bin-width} \left[\frac{d}{dv} \left(\int_{solid-angle-opening} \frac{d}{d\Omega} \left(\frac{dN_{events}}{dt} \right) d\Omega \right) \right] dv \right\} dt$$

• Where
$$\frac{dN_{events}}{dt} = (\sigma_R * \Phi * n_t)$$

 Normalization: Bin Normalization Angular Acceptance Integrated flux targets area density

Cross Section Data vs. Theory

Cross Section Data vs. Theory

Results with CLAS12 data - future

- Correct for systematics
- Use more statistics There are much more available statistics!
- Create inclusive cross section for different beam energies and nuclei.

Conclusion

• Low Level Analysis

- Electron PID, Fiducial, and Vertex Cuts
- Proton PID, Fiducial, and Vertex Cuts
- Neutrons still have work
- Working on second round of comments from analysis note.

• SRC Analysis

- Q2 dependence of SRCs
- SRCs in Asymmetric Nuclei

• e4v Analysis

Pass-1 Data preview

Scale Dependence of SRC Measurements

RGM Data

Scale Dependence of SRC Measurements

Measuring SRC Probe (In)dependence

 $0.55 GeV < p_{miss} < 0.7 GeV$

 $0.7 GeV < p_{miss} < 0.85 GeV$