First look at nTMD observables with RG-D data

Jun 26th 2024

DANIEL MATAMOROS

Established by the European Commission

nTMD studies through SIDIS in RG-D

Goal: Study of nTMDs: Understand the structure of nuclei in terms of quarks and gluons through 3D momentum space distribution of hadrons. through SIDIS processes.

- Hadron production through γ *

 $> e(k) + N(p) -> e(k') + X(p') + h(P_h)$

- detection of one of the produced hadrons
- cross section -> convolution of TMD parton distributions and TMD fragmentation functions

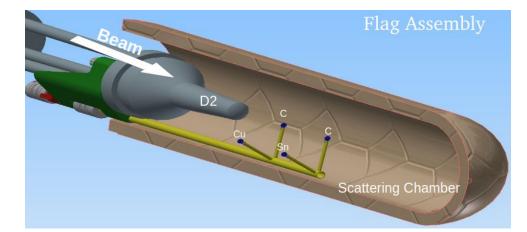
k ξΡ

- Experimental Observables: Cross section, Beam Spin Asymmetry
- Studied observables: $\cos \phi_h$, $\sin \phi_h$, $\cos 2\phi_h$

This Work: Use of unpolarized nuclear targets where only the $\cos \varphi$, $\cos 2\varphi$ and $\sin \varphi$ components will contribute in this cross section. Study of TMDs, using nuclear targets. On going study of experimental observables such as multiplicity Ratio R, Pt² broadening , and $\cos\varphi$ ratio, using a deuterium target for reference.

$$R^{h}_{A} = \frac{(N_{h}/N_{e})_{A}}{(N_{h}/N_{e})_{D}} \qquad \Delta < p^{2}_{t} > = < p^{2}_{t} >_{A} - < p^{2}_{t} >_{N}$$

 $\frac{\langle \cos\phi_h \rangle_A}{\langle \cos\phi_h \rangle_N}$

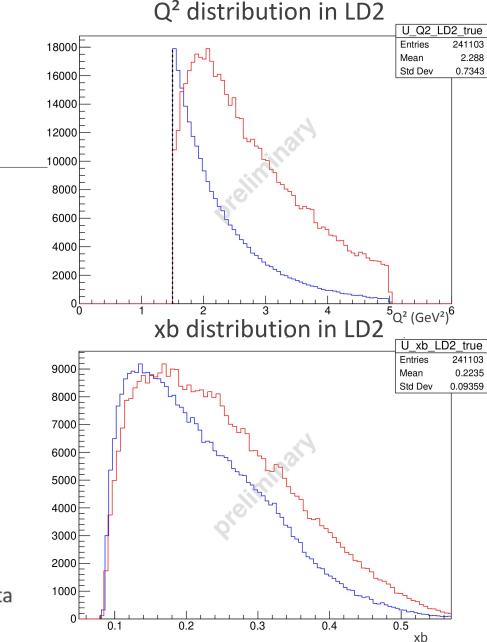

Experimental configuration

10.5 GeV electron beam on nuclear targets

- Targets: nuclear solid foils LD2, Cu, C and Sn.
- $^\circ$ Currently developing analysis tools to monitor the reconstructed particles such as e-, $\pi,\,k,\,etc$

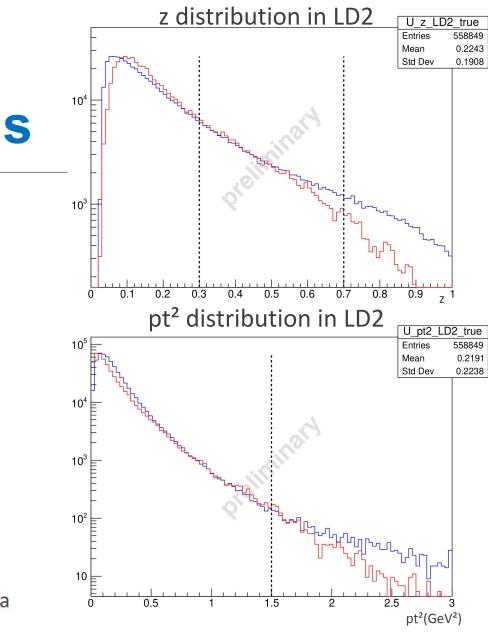
This work: Successful completion of data taking (Oct. 04, 2023 - Dec. 15, 2023). Data Calibration ongoing.

- Analysis Implemented: π + selection
- Currently Implementing this target configuration in simulations.



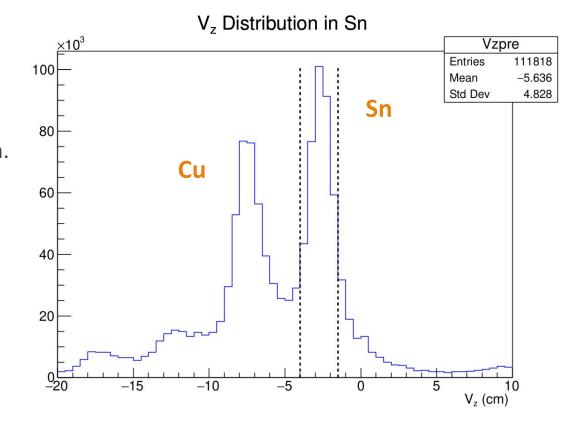
Simulation Procedure

- Using a Leading Order event generator, Pythia based, used to simulate SIDIS processes with added nuclear effects to simulate processes on nuclear targets.
- Using an official version of RG-D gcard for GEMC, that considers the target assembly and vertex z positions. Most recent configurations on RG-D cryo-target and flag assembly can be found in https://github.com/gemc/detectors/pull/233.
- Currently using simulation for monitoring and comparison on preliminary results.

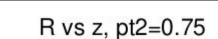

Data Selection

- Considering first coincidences on e- and π +
- Standard kinematic variables considered and cuts for example:
 - $\circ \quad Q^2 > 1 \ GeV^2$
 - \circ 0.25 < y < 0.85
 - W > 2 GeV
- Detector cuts from RG-A analysis note.
- Simulation not fully optimized yet. On going.

specific preliminary analysis


- Monitoring data from available data
- Events considered with π + production
- Kinematic Variables specific to the **hadron** for TMDs:
 - z = Fraction of the virtual photon energy carried by the hadron.
 - 0.3 < **z** < 0.7
 - **pt²** = transverse momentum of hadrons
 - **pt²** < 1.5 GeV²

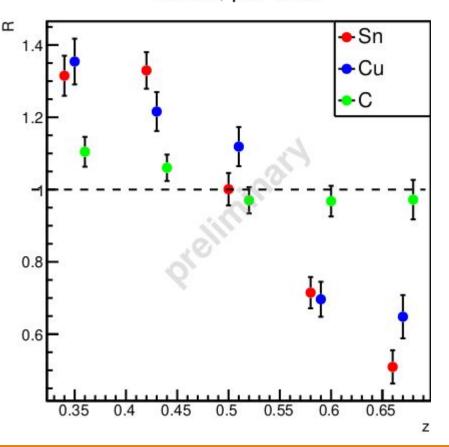
red is simulated data blue is RG-D data


specific preliminary analysis

- Monitoring data from available data
- Events considered with π + production
- Kinematic Variables specific to the **hadron** for TMDs:
 - **z** = Fraction of the virtual photon energy carried by the hadron.
 - 0.3 < **z** < 0.7
 - **pt²** = transverse momentum of hadrons
 - $pt^2 < 1.5 \text{ GeV}^2$
- Vertex z cuts need to be considered according to target positions
 - Preliminary Arbitrary Cuts on Vz for all targets

Multiplicity Ratio

$$R_A^{\pi}(\nu, z, p_t^2) = \frac{N_{\pi}^{Sn}(\nu, z, p_t^2) / N_e^{Sn}(\nu)}{N_{\pi}^D(\nu, z, p_t^2) / N_e^D(\nu)}$$



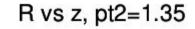
Multi dimensional analysis can be implemented in order to consider cross-variable correlations.

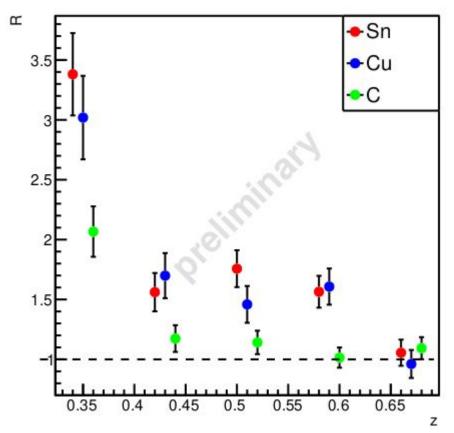
Currently considering a three-Dimensional analysis with V , z and $\ensuremath{\mathsf{pt}^2}$

Analysis with no corrections implemented (on going)

Here, plot of multiplicity Ratio for different nuclei targets compared to reference Deuterium for V=4.5; $pt^2 = 0.75$ as a function of z.

Multiplicity Ratio $R_A^{\pi}(\nu, z, p_t^2) = \frac{N_{\pi}^{Sn}(\nu, z, p_t^2)/N_e^{Sn}(\nu)}{N_{\pi}^D(\nu, z, p_t^2)/N_e^D(\nu)}$

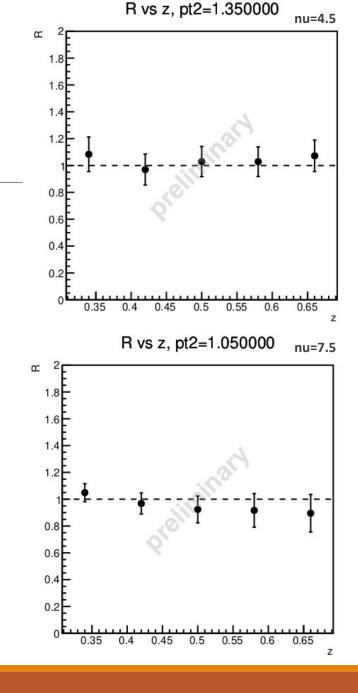

Multi dimensional analysis can be implemented in order to consider cross-variable correlations.

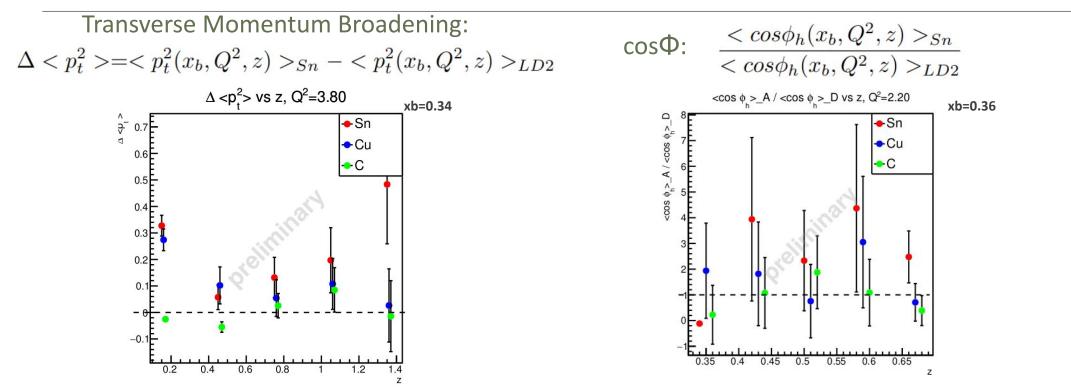

Currently considering a three-Dimensional analysis with ${\sf V}$, ${\sf z}$ and ${\sf pt}^{\sf 2}$

Analysis with no corrections implemented (on going)

Here, plot of multiplicity Ratio for different nuclei targets compared to reference Deuterium for V=4.5; $pt^2 = 1.35$ as a function of z.

We can observe a deviation for high values of transverse momentum. But non conclusive results yet, calibrations and corrections remain to be implemented




Multiplicity Ratio on both Carbon targets

$$R_{C\times C}^{\pi}(\nu, z, p_t^2) = \frac{N_{\pi}^{C1}(\nu, z, p_t^2) / N_e^{C1}(\nu)}{N_{\pi}^{C2}(\nu, z, p_t^2) / N_e^{C2}(\nu)}$$

- Implementing multiplicity ratio with same target (on CxC runs)
- Useful for verification on Multiplicity Ratio
- Showing results for different values of V and pt² as generalized example
- All resulting Ratio plots are close to 1 as expected

Other observables in progress

Very preliminary plots, work in progress. Results can't be conclusive yet, optimization remains to be done.

Corrections can be implemented. Other variables can be considered.

Summary

Implemented work

- Preliminary Data analysis for a study of TMDs on SIDIS with recent available data.
- Coherent/expected results on available data with initial analysis. Progress remains to be done.
- Adaptation of a SIDIS simulation to replicate RG-D conditions. On going

Update on study of the simulation

- Simulation used to compare with available data replicating experimental conditions as possible
- Currently implemented RG-D targets on the generator.
- Using official RG-D GEMC configurations for simulation.

On going work

- Calibration on available data remains ongoing.
- Acceptance and Radiative effects need to be considered for corrections.
- Adapting simulations to experimental configurations & Implementing analysis.
- Consider other experimental observables.