

Implementation Guardian of Analysis Algorithms

Christopher Dilks

https://github.com/JeffersonLab/iguana

https://github.com/JeffersonLab/iguana

C. Dilks Iguana 2

Purpose

Encapsulate, centralize, and preserve common needs in Iguana Algorithms

– Methodology preservation (cf. data preservation efforts)

– Reproducibility

– Allow for focus on the important parts of an analysis

– Centralization increases the number of code reviewers
● Lower probability of bugs
● But if there are bugs, they impact all users

● Validation is critical

– More details from the last CLAS Collaboration Meeting:
https://indico.jlab.org/event/829/contributions/14072/attachments/10720/16241/iguana.pdf

https://indico.jlab.org/event/829/contributions/14072/attachments/10720/16241/iguana.pdf

C. Dilks Iguana 3Iguana

What do we mean by Algorithm?

Input Banks
REC::Particle

REC::Traj

RUN::config

Filtered Output Bank

REC::Particle,
filtered by fiducial cuts

Fiducial Cuts

We define “Algorithm” as a function that maps a set of input banks to a set of output banks

Filter Algorithm: accepts/rejects rows of bank(s)

C. Dilks Iguana 4Iguana

What do we mean by Algorithm?

Input Banks
RUN::config

REC::Particle

REC::Particle::Sector
(created by SectorFinder algorithm)

Modified Output Bank

REC::Particle,

with corrected momenta

Momentum Corrections

Transformer Algorithm: modifies bank(s)

Input Banks
REC::Particle

New Output Bank

physics::InclusiveKinematics,

with x, Q2, W, etc.

Inclusive Kinematics
Reconstruction

Creator Algorithm: creates new bank(s)

C. Dilks Iguana 5

Action Functions
Algorithms use HIPO C++ hipo::bank objects as their input/output
● https://github.com/gavalian/hipo
● However, not all users use these objects → supported by “action functions”

Action Functions
● Definition: a function with simple parameters and return values, providing algorithm usage for all users
● All Iguana algorithms should provide action functions
● The main algorithm function Run(std::vector<hipo::bank>&) calls action functions

Types of Action Functions
● Scalar action functions: parameter types such as int, double, string
● Vector action functions: parameter types are lists, e.g. std::vector<int>

● May call the corresponding scalar action function iteratively
● TODO: we haven’t yet written any vector action functions!

● Properties:
● Any scalar action function should have a corresponding vector action function
● Not all vector action functions can have a corresponding scalar action function

● Some algorithms can only have vector action functions

Vector action
functions

Scalar action
functions

https://github.com/gavalian/hipo

C. Dilks Iguana 6

Iguana Usage Options
HIPO C++ API: https://github.com/gavalian/hipo

The “primary” API, for the purpose of generalization, testing, infrastructure, etc.

Action functions:

Available languages: algorithms are in C++, and bindings provide usage from other languages:
● C++

● “Native” (no bindings), since algorithms are in C++
● Python

● Via cppyy (the same as PyROOT; may be changed in the future!)
● See HIPOPy example: https://github.com/JeffersonLab/iguana/blob/main/bind/python/iguana_ex_python_hipopy.py

● Fortran
● Using ISO_C_BINDING
● TODO: missing several action functions (since we are still testing the design)

● Java to be added soon

Action functions support clas12root usage

Action functions support HIPO dataframes usage
● (room for improvement / user-friendliness)

https://github.com/gavalian/hipo
https://github.com/mfmceneaney/hipopy
https://github.com/JeffersonLab/iguana/blob/main/bind/python/iguana_ex_python_hipopy.py

C. Dilks Iguana 7

Where can I find Iguana?

● On ifarm

– module avail iguana

– module load iguana/0.7.0 (the current default)

● Build it yourself

– Follow https://github.com/JeffersonLab/iguana/blob/main/doc/setup.md

– All dependencies are available on ifarm
● A bit more work if you want to build on your personal computer

https://github.com/JeffersonLab/iguana/blob/main/doc/setup.md

C. Dilks Iguana 8

Available Algorithms
Algorithm Maintainer Status

clas12::FTEnergyCorrection Asli Acar Algorithm done; validation in progress

clas12::FiducialFilter Gregory Matousek (for Stefan Diehl) Done; in version iguana/0.7.1 (not yet on ifarm)

clas12::LeptonIDFilter Mariana Tenorio Algorithm in progress

clas12::MomentumCorrection Chris Dilks (for Richard Capobianco) Done; validation in progress

clas12::PhotonGBTFilter Gregory Matousek Done

clas12::SectorFinder Richard Tyson Done, but needs a Validator

clas12::ZVertexFilter Richard Tyson Done, but needs better config and validator

physics::InclusiveKinematics Chris Dilks Done

Note: we have additional, example algorithms, such as clas12::EventBuilderFilter
Coming up next: presentations by the algorithm maintainers

C. Dilks Iguana 9Iguana

Can I put an algorithm in Iguana?
● Yes, please!

● If you need a new dependency, ask and we’ll try to add it

● Your algorithm must be in C++, so that it integrates well with other existing
algorithms, tests, and language bindings

– If your algorithm cannot be ported to C++, then we’ll need a simple C++
“wrapper” algorithm that would call your code and handle its output

● For example, if you really need your algorithm to be in Python:

User C++ code

C++ Iguana
algorithm

Your Python
code “Under the hood”

User Fortran code

User Java code

User Python code

C. Dilks Iguana 10

Contributions are Welcome
We follow the usual GitHub workflow
● Issues: planned work, bugs, feature requests, …
● Pull Requests: new code, fixed code, …

You may also contact the CLAS Software Group
● Via email
● My email: dilks AT jlab DOT org
● Post in the CLAS Discourse: https://clas12.discourse.group/

New algorithms and ideas are welcome!

https://github.com/JeffersonLab/iguana

https://clas12.discourse.group/
https://github.com/JeffersonLab/iguana

C. Dilks Iguana 11

Iguana Walk-through
● Now let’s go through the Iguana documentation, including:

● Algorithms’ documentation
● C++ examples

● Consumers: CMake, Makefile, meson
● Python examples
● Fortran examples

https://github.com/JeffersonLab/iguana/blob/main/README.md
● See in particular, the Iguana User’s Guide

● clas12root usage in the next slides

NOTE: whereas these slides are “frozen” and will not be
updated, the Iguana documentation is a “living document” and

will receive frequent updates

https://github.com/JeffersonLab/iguana/blob/main/README.md

C. Dilks Iguana 12Slide from Derek Glazier

C. Dilks Iguana 13Slide from Derek Glazier

Note:

This is a Clas12root wrapper of the more
commonly used Iguana algorithms
● Provides tighter integration with

Clas12root’s design → more
optimized for Clas12root users

● Not maintained by Iguana developers,
therefore may not be up-to-date

● If you want to use all of Iguana, use it
directly (see previous slide)

C. Dilks Iguana 14

Next up: Algorithm Presentations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

