Monte Carlo with pulser beam background

Sarah Gaiser Stanford/SLAC June 4, 2024

U.S. DEPARTMENT OF

Stanford University

Motivation

- Fall 2022, early 2023: Tongtong and Cam show excess of FEEs in MC simulated beam
- Above: old plots from Cam
 - For thin (8 $\mu m)$ target: data and MC agree at low momenta; distributions diverge at FEE peak
 - Comparing to data taken with thick (10 $\mu{\rm m})$ target: thin target MC has more events in FEE peak

- Generation of full MC sample (beam and signal simulated) takes a lot of time
 - Full simulation of beam and detector response takes about 4 hours
 - Merging of simulated beam and signal adds another $\sim 1\,\text{h}$
- Overlaying simulated signal with random beam background (pulser) could be faster

MC methods – combination of signal+beam

- full MC: generate continuous beam background, merge with spaced signal
- pulser: overlay signal and random beam, space in time, and expand

A'+beam MC sample production

- Full MC
 - Beam and signal simulated
 - Signal spaced by event interval = 250
 - Using LCIOMerge to merge both samples
 - For more details see

hps-mc/python/jobs/signal_beam_merge_to_recon_job.py

- Pulser data
 - Overlay random beam data and simulated signal
 - Space events with event interval = 250
 - For more details see

hps-mc/python/jobs/signal_pulser_overlay_to_recon_job.py

- For both samples: run the same readout and reconstruction
 - Steering for readout: PhysicsRun2021TrigMultiSingles.lcsim and PhysicsRun2019TrigSinglesWithPulserDataMerging.lcsim
 - Both use singles2 and singles3 trigger
- Detector used: HPS_Run2021Pass1_v4; run number: 14229

<u>si ar</u>

Comparison production times

- Generation of full MC sample
 - Full simulation of beam and detector response takes about 4 hours
 - Merging of simulated beam and signal adds another $\sim 1\,\text{h}$
- Overlaying simulated signal with pulser
 - Converting files and skimming random $+ \ {\rm pulser}$ triggers takes about 2h or less
 - Overlaying signal and pulser takes $\mathcal{O}(10 \, \text{s})$

Comparing track momenta

- Find tracks with $n_{
 m hits} \geq 10$ and $\chi^2/
 m ndf \leq 30$
- Comparing Cam's old plot to simulated and pulser track momenta
 - Distributions have low momentum peak from simulated A' signal
 - Full MC shows an excess of FEEs
 - Pulser data shows a much smaller peak at beam energy

SI AC

Preselection cutflow

Looking at the number of triggers: additional triggers for full MC

 Are the additional events out of time backgrounds?

EventHeader event time

Out-of-time background for full MC adds to the total number of triggers

Cut on event time t_{event} %500 < 20

- Cut on event time removes $\mathcal{O}(10^3)$ events from full MC and $\mathcal{O}(50)$ events from pulser

Positron clusters - no cut on event time

- Looking at positron cluster energy vs time
 - Bunch structure in time visible main peak at different times
 - Similar structure in energy distribution

Positron cluster time - no cut on event time

Difference in timing for both models

- Originating from readout simulation; different time shifts?
- Full MC has more background at $t \lesssim 20 \, {\rm ns}$

Comparison of psum distributions – no time cut

• More events in full MC; ratio \sim constant around 1.1-1.2

Cut on positron cluster time $t_{clust} > -25$

Cut on positron cluster time, allowing t_{clust} > -25 for both samples
 Removes O(2000) events from full MC

Cut on positron cluster time and event time

• Event time t_{event} %500 < 20 and positron cluster time $t_{\text{clust}} > -25$

Full MC still has more events in high psum tail

Tight selection

- Number of events that pass tight selection similar for both methods
- L1L1 requirement has a big impact on both samples

Psum after preselection

Distributions match; slightly fewer events in full MC

Psum after preselection – time cuts

- $t_{\text{clust}} > -25$ and $t_{\text{event}}\%500 < 20$
- Cuts back on full MC event number

Conclusion I

- Using pulser and randomly triggered data enables us to correctly reproduce the beam background.
- Apart from differences in timing (event time and cluster time), the two MC versions are very similar.
 - Full MC has extra, out-of-time events
 - Positron cluster time peak is shifted by about 5 ns
- After preselection, including time cuts, psum distributions match
 - Small excess of events in high psum tail for full MC
- Tight selection yields matching psum distributions for both methods
- Note: investigation of pulser overlay led to (minor) bug fix
 - Previously only singles3 trigger was used in the readout simulation for pulser overlay
 - Now: singles2 and singles3, matching full MC trigger simulation

Moving on: first analysis of pulser + signal MC

- From now on: ignore full MC sample, focus on comparing pulser+A' to pure A' sample
 - Pure A' sample is spaced and extended in time, just not overlayed with pulser data

Additionally: look at low luminosity pulser overlay

- Using 2021 low lumi run 14166
- Expect less background for low lumi overlay reconstruction performance similar to pure A' sample
- Same overlay, readout, reconstruction pipeline as for 'normal' pulser

Preselection cutflow

- Pulser has more simulated triggers after readout
- $\chi^2_{\rm unc}$ cut reduces the number of events for pulser relative to pure A' and low lumi pulser

Psum distribution after preselection

'Normal' pulser fewer events than low lumi and pure A'

Pulser low momentum tail matches but peak doesn't

Tight selection cutflow

- Low lumi and spaced A' number of events match at each cut level
- L1L1 cut equalizes event numbers

Psum distribution after tight selection

Seems like pulser has relatively fewer events in peak

tanL vs momentum - positron tracks

Conclusion II

- As expected: reconstruction of vertices influenced by background
 - Low luminosity pulser events mix in less background better vertex reconstruction
 - L1L1 requirement powerful for removing misreconstructed/mismatched tracks
- Pulser tracks show high momentum tails and asymmetric $\tan\lambda$ distribution in 2D
 - Asymmetry doesn't show in the projection

- Using pulser and randomly triggered data enables us to correctly reproduce the beam background.
- Apart from differences in timing (event time and cluster time), the two MC versions are very similar.
 - After preselection, including time cuts, psum distributions match
 - Tight selection yields matching psum distributions for both methods
- Further analysis of pulser MC needed to understand systematics
- Other things
 - Pulser overlay for 2016: hps-java PR

<u>si a</u>6

Time difference between tracks – preselection

Electron and positron track time difference after preselection

Time difference between tracks - tight selection

Electron and positron track time difference after tight selection

tanL vs track momentum

unc_vtx_pox_track_tanLambdaunc_vtx_paum (abs(unc_vtx_pox_track_tanLambda)cabs(unc_vtx_sis_track_tanLambda))

unc_vtx_pos_track_tanLambda.unc_vtx_poum_jabs(unc_vtx_pos_track_tanLambda)cabs(unc_vtx_ele_track_tanLambda)

Fill track with lower tanL, don't care about charge

tanL vs track momentum

Fill track with lower tanL, don't care about charge

tanL vs momentum - electron tracks

