
Effective git use

GSPDA Mini-Software Workshop

May 24, 2024
Stephen Wood

(These slides from June 2018, Hall A/C Software Workshop)

Why version
control?

"Piled Higher and Deeper" by Jorge Cham,

$ git log --oneline –reverse
…
a0de8a6 Add figure captions
decea72 Final proofing, ready for advisor
3ce5c28 Make advisor’s corrections
69c0f4c Address advisor’s comments
152d0f5 Deal with advisor’s corrections
e093339 Why did I come to grad school?

$ git diff decea72 e093339

YouTube video series:
”Git and GitHub for Poets”

https://youtu.be/BCQHnlnPusY

Collection of links to
information about git:
https://hallcweb.jlab.org/wiki/
index.php/Git_Howto

https://youtu.be/BCQHnlnPusY
https://hallcweb.jlab.org/wiki/index.php/Git_Howto
https://hallcweb.jlab.org/wiki/index.php/Git_Howto

Advice
Use git for everything
 Don’t need a server (GitHub) for personal projects
 Text/Tex, Web pages, poetry, configuration files, Reports, publications, theses

Don’t work in the ”master” (“develop” in case of hcana) branch
 Keep master branch in sync with main server

Keep crap out of repository with .gitignore
(intermediate files, binaries, emacs junk, latex junk, root files, …)

Use branches liberally

Commit early and often – commitment is not forever!
 First line of commit comment should summarize the changes

Rewrite your commit history before putting in public repository
 Make development process look logical, improve commit comments

Learn how to resolve conflicts when merging and rebasing

Learn and follow “rules” of projects you join

Read online git tutorials, practice

GitHub.com -
github.com is a git server with many added features

GitHub != git -- GitHub not needed for personal projects without collaborators

By default, projects on GitHub are public

JeffersonLab has a corporate account. Allows private repositories, most are public.
 (private projects still visible to JLab users)

Anyone can setup unlimited projects repositories.
 Price = all your stuff is public

There are many other free and $ git servers. We just happen to use GitHub.

More on JLab GitHub use, see Tyler Hague’s:

https://redmine.jlab.org/attachments/download/185/TritiumAnalysisOrganization.pdf

JLab now migrating to locally hosted git server GitLab:
 https://code.jlab.org

https://redmine.jlab.org/attachments/download/185/TritiumAnalysisOrganization.pdf

Contributing to typical Hall A/C project

https://github.com/JeffersonLab/project https://github.com/yourgithub
account/project

master
master

mybranch

A1: fork

My Computer

master

mybranch

A2: git clone

B1: git checkout –b mybranch

B2: git push

B3: Pull Request

C1: fetch/merge
C2: git push

A: Initial setup

B: Contributing

C: Keeping things up
to date

https://github.com/JeffersonLab/project
https://github.com/yourgithubaccount/project
https://github.com/yourgithubaccount/project

GitHub.com – collaboration
 – Details will differ with GitLab
To collaborate on a Jlab GitHub project (e.g. analyzer, hcana, hallc_replay, …) get your own
GitHub account.

Install your public ssh key on GitHub (or give password on git push)

Visit project page – e.g. https://github.com/JeffersonLab/hallc_replay

Fork the project (top right)

Clone the “fork”

git clone git@github.com:YOURUSERNAME/hallc_replay.git
cd hallc_replay
git remote add --track master upstream https://github.com/JeffersonLab/hallc_replay

Git checkout –b myaddedfeatures
 Do stuff
git push origin myaddedfeatures

On hallc_replay project page on GitHub, select “myaddedfeatures” branch and click “New
pull request”. Wait for project manager to merge changes. Update your “master” branch.

See https://hallcweb.jlab.org/wiki/index.php/Analyzer/Git for detailed “hcana” information

https://github.com/JeffersonLab/hallc_replay
mailto:git@github.com:YOURUSERNAME/hallc_replay.git
https://github.com/JeffersonLab/hcana
https://hallcweb.jlab.org/wiki/index.php/Analyzer/Git

git – Authorship

$ git log
…
commit d6e15d1667932495ec1c3e7e4723314cc496838d
Author: Carlos Yero <cyero002@fiu.edu>
…
commit 4254664d54055f61046ed90d1a0e901d3f980342
Author: hallc-online <hallconline@gmail.com>
…
commit d3c4f8c1938f408968443d977f141981dd9f1d15
Author: hallc-online <hallconline@gmail.com>
…
commit f26d1d0dde44da558e67940950b9c1d00548269c
Author: hallc-online <hallconline@gmail.com>

Sample commits from Hall C analyzer hcana

Who made these commits?

Commits were made on counting house analysis accounts.

How to show proper authorship with out making other authors show up
as yourself?

I didn’t make these
commits to HallA-Online-
Tritium.

git – Overriding authorship

$ git commit –author=“Susan B. Anthony <dollar@treasury.com>” {files}

1. Override default author with:

Need to remember to use “—author” every commit. If you
forget, can do:

$ git commit –author=“Susan B. Anthony <dollar@treasury.com>” --amend

(if done before commit is pushed to GitHub)

2. Or set author for personal clone on analysis account:

cd directorywiththepersonalclone
git config user.name “your name”
git config user.email xxx@jlab.org

cat .git/config

3. Or set environment variables:
GIT_AUTHOR_NAME
GIT_AUTHOR_EMAIL

mailto:dollar@treasury.com
mailto:dollar@treasury.com
mailto:xxx@jlab.org

The “.gitignore” file
Avoid including ”derived” files and editor junk in git repository.
 .o files, executables, log files, intermediate files, etc.

Create a file ”.gitignore” with one line for each thing to ignore.

*~
\#*\#
*.o
*.root
ROOTfiles/
…

git add .gitignore
git commit .gitignore

Or edit “.git/info/exclude”
If for whatever reason you don’t want to edit .gitignore:

Add lines to

 .git/info/exclude

with the same syntax as .gitignore

gitk – a useful utility

Graphical display of commit
history and changes.

gitk

Or “tig”, similar but
without Xwindows.

On your virtual machine
yum install tig

Or “gitx” on MacOSX

git – setting defaults – Exercise 0

git config --global user.name “your name”
git config --global user.email xxx@jlab.org
git config --global core.editor ”emacs” (or nano or vim)
git config --global push.default simple

cat ~/.gitconfig

mailto:xxx@jlab.org

Rebasing / Editing history
Starting from “master branch”

git checkout –b workbranch

Do some work, lots of commits

git rebase –i master

 Edit the list and save

git log --oneline
078c9b0 Create filec
b64f990 Create fileb
b3a7efc Create filea
5376520 Initial commit

git checkout master
git merge workbranch

pick d8f7fa2 Start working on file a.
pick ae17be0 Start working a fileb
pick 082c27e More work on filea, didn't finish, had to go home
pick 2ee43df More work on file b
pick 393b333 Fix typo in file b
pick d5a2c39 Finish filea
pick d8df357 Something else

pick d8f7fa2 Start working on file a.
squash 082c27e More work on filea, didn't finish, had to go home
squash d5a2c39 Finish filea
pick ae17be0 Start working a fileb
squash 2ee43df More work on file b
squash 393b333 Fix typo in file b
edit d8df357 Something else

Rebasing – Exercise 1 – page 1

1. Start a new git project
mkdir hello ; cd hello ; git init ; git status

2. Create “README.md” file, “add” and “commit” it
emacs README.md
git add README.md
git commit README.md
git status

3. Create a working branch
git checkout –b workingbranch

4. Create program “hello.c“
emacs hello.c; cc -o hello hello.c ; ./hello
git add hello.c ; git commit hello.c
git log

5. Add a Makefile
emacs Makefile
Add and commit
git status

/* hello.c */
#include ”stdio.h”
Main(){
 printf(“Hello World\n”);
}

Makefile
hello: hello.o

hello.o: hello.c

Should see commits for README, hello.c and Makefile.

Rebasing – Exercise 1 – page 2

6. Add a line after the printf, but with a compile bug
git commit hello.c
make - Observe that it doesn’t compile

7. Fix the bug
git commit hello.c

8. Add a .gitignore file
git status
emacs .gitignore ; commit .gitignore
git status

9. Observe the history
git log

printf(“Hello Sunshine\n”):

Use colon instead of semi-colon

$ git log --oneline
8e00f82 (HEAD -> work) Add a git ignore file
5b591b8 Fix the sunshine bug
e9aed89 Add some sunshine
e5075c2 Add a Makefile
c8bfc82 First program
4718615 (master) First commit

.gitignore
*.o
hello

Rebasing – Exercise 1 – page 3
A more complicated Change the history to look like:

Create .gitignore
Create Makefile
Create Working hello.c (with sunshine)

git rebase –i master

Edit list to look like this
Save rebase list
Rewrite hello.c commit when prompted

If you mess up, delete all the pick, etc. lines in the buffer and save. This will abort the
rebasing.

11. Merge ”workingbranch” into master (or make pull request for collabortive project.)
 git checkout master
 git merge workingbranch
 git log
 git branch –d workingbranch

pick 8e00f82 Add a git ignore file
pick e5075c2 Add a Makefile
pick c8bfc82 First program
squash e9aed89 Add some sunshine
squash 5b591b8 Fix the sunshine bug

pick c8bfc82 First program
pick e5075c2 Add a Makefile
pick e9aed89 Add some sunshine
pick 5b591b8 Fix the sunshine bug
pick 8e00f82 Add a git ignore file

Rebasing – Exercise 2 – page 1

1. Start a new git project
git clone https://github.com/sawjlab/rebase_exercise rebase
cd rebase
git checkout features_branch

2. Resolve the conflict
git rebase master
emacs justcode.c
(Or use “git mergetool” if configured)

In this exercise, we have developed two independent features in parallel in a
series of commits. Before merging with master (or pull requesting), we wish to
rebase into a single commit for each feature, hiding our messy development
process.

There are two problems:
1. After branching to “features_branch”, a change that conflicts with our changes
has been made.
2. On one commit we made include changes related to both features. We need

to split this commit into separate commits for each feature before squshing
related commits together.

<<<<<<< HEAD
 printf("This is a program to compute prime …
 printf("Sieve of Eratosthenes\n);

=======
 /* Sieve of Eratosthenes */
>>>>>>> justcode: add a comment

This will show “CONFLICT” error

https://github.com/sawjlab/rebase_exercise

Rebasing – Exercise 2 – page 2
2. (continued)

Usually choose code before or after =====
Here, keep it all
Remove <<<<<, =====, and >>>>> lines.

git rebase –continue

3. Split the combined commit
git rebase –i master
Replace “pick” with “edit”
Save buffer
git reset HEAD~
git commit justcode.c
git commit printfs.c
git rebase --continue

4. Reorder and squash
git rebase –i master
Reorder the commits.
For each feature, squash extra commits.

5. Merge into master (or make pull request)
git checkout master
git merge features_branch

<<<<<<< HEAD
 printf("This is a program to compute prime …
 printf("Sieve of Eratosthenes\n);

=======
 /* Sieve of Eratosthenes */
>>>>>>> justcode: add a comment

pick 239792e justcode, declare i
pick 2a9192a justcode: add a comment
edit ca1ddcb justcode: bug fixes, printfs: print more numbers
pick a39322d justcode: Print out the primes
pick 53e26c1 justcode: Finally got it working
pick c174bac printfs: Add computation of Lucas Numbers

pick 239792e justcode, declare i
squash 2a9192a justcode: add a comment
squash 7a6adb1 justcode: bug fixes
squash c053fdf justcode: Print out the primes
squash 1c7674c justcode: Finally got it working
pick 0e5858d printfs: print more numbers
squash a38eb3d printfs: Add computation of Lucas Numbers

