Effective git use

GSPDA Mini-Software Workshop

May 24, 2024

Stephen Wood

(These slides from June 2018, Hall A/C Software Workshop)

$ git log ——oneline —reverse

a0de8ab
decea72
3ce5c28
69c0fdc
152d0f5
€093339

$ git diff decea72 e093339

Collection of links to

Why version FlNAL.dOC

control?

Add figure captions
Final proofing, ready for advisor tFlNAL.dc;t:!
Make advisor’'s corrections
Address advisor’s comments
Deal with advisor’s corrections
Why did I come to grad school?

f
FINAL _rev.6.COMMENTS.doc FINAL _rev.8.commentsS.

information about git: CORRECTIONS.doc

https://hallcweb.jlab.org/wiki/

index.php/Git Howto
q
(]
3
YouTube video series: %
"Git and GitHub for Poets” 8)
https://youtu.be/BCQHn1nPusY FINAL_rev.18.comments?. £INAL_rev.22.commente4q.

corrections?.MORE.30.doc ¢orrections.10. #@$B%WHYDD

"Piled Higher and Deeper" by Jorge Cham, WWW.PHDCOMICS. COM

https://youtu.be/BCQHnlnPusY
https://hallcweb.jlab.org/wiki/index.php/Git_Howto
https://hallcweb.jlab.org/wiki/index.php/Git_Howto

Advice

Use git for everything
Don’t need a server (GitHub) for personal projects
Text/Tex, Web pages, poetry, configuration files, Reports, publications, theses

Don’t work in the "master” (“develop” in case of hcana) branch
Keep master branch in sync with main server

Keep crap out of repository with .gitignore In case of fire 0

(intermediate files, binaries, emacs junk, latex junk, root files, ...) =O= 1. git commit
2. gi h
Use branches liberally ﬁ git pus

Commit early and often — commitment is not forever!
First line of commit comment should summarize the changes

Rewrite your commit history before putting in public repository
Make development process look logical, improve commit comments

Learn how to resolve conflicts when merging and rebasing
Learn and follow “rules” of projects you join

Read online git tutorials, practice

GitHub.com -

github.com is a git server with many added features
GitHub !=git -- GitHub not needed for personal projects without collaborators
By default, projects on GitHub are public

JeffersonlLab has a corporate account. Allows private repositories, most are public.
(private projects still visible to JLab users)

Anyone can setup unlimited projects repositories.
Price = all your stuff is public

There are many other free and $ git servers. We just happen to use GitHub.

More on JLab GitHub use, see Tyler Hague’s:

https://redmine.jlab.org/attachments/download/185/TritiumAnalysisOrganization.pdf

JLab now migrating to locally hosted git server GitLab:
https://code.jlab.org

https://redmine.jlab.org/attachments/download/185/TritiumAnalysisOrganization.pdf

Contributing to typical Hall A/C project

https://github.com/JeffersonlLab/project https://github.com/yourgithub
account/project

Initial setup
B: Contributing

C: Keeping things up
to date

My Computer

https://github.com/JeffersonLab/project
https://github.com/yourgithubaccount/project
https://github.com/yourgithubaccount/project

GitHub.com - collaboration
— Details will differ with GitLab

To collaborate on a Jlab GitHub project (e.g. analyzer, hcana, hallc_replay, ...) get your own
GitHub account.

Install your public ssh key on GitHub (or give password on git push)

Visit project page — e.g. https://github.com/JeffersonLab/hallc_replay

Fork the project (top right)
Clone the “fork”

git clone git@github.com:YOURUSERNAME/hallc replay.git
cd hallc replay
git remote add --track master upstream https://github.com/JeffersonlLab/hallc replay

Git checkout -b myaddedfeatures
Do stuff

git push origin myaddedfeatures

On hallc_replay project page on GitHub, select “myaddedfeatures” branch and click “New
pull request”. Wait for project manager to merge changes. Update your “master” branch.

See https://hallcweb.jlab.org/wiki/index.php/Analyzer/Git for detailed “hcana” information

https://github.com/JeffersonLab/hallc_replay
mailto:git@github.com:YOURUSERNAME/hallc_replay.git
https://github.com/JeffersonLab/hcana
https://hallcweb.jlab.org/wiki/index.php/Analyzer/Git

Commits on Feb 12, 2018

git - AUthorSh i p Revert "fix the crash for the new lib"

m sawjlab committed on Feb 12

Sample commits from Hall C analyzer hcana
fix the crash for the new lib

S git log ﬂ sawjlab committed on Feb 12

commit d6e15d1667932495eclc3e7e4723314cc496838d fix the crash for the new lib
Author: Carlos Yero <cyero002 @fiu.edu>

m sawjlab committed on Feb 12

commit 4254664d54055f61046ed90d1a0e901d3f980342 \
Author: hallc-online <hallconline@gmail.com> | didn’t make these

commits to HallA-Online-
Tritium.

commit d3c4f8c1938f408968443d977f141981dd9f1d1
Author: hallc-online <hallconline@gmail.com>

commit f26d1d0dde44da558e67940950b9¢c1d00548269c¢
Author: hallc-online <hallconline@gmail.com>

Who made these commits?
Commits were made on counting house analysis accounts.

How to show proper authorship with out making other authors show up
as yourself?

git — Overriding authorship

1. Override default author with:

S git commit —author=“Susan B. Anthony <dollar@treasury.com>”" {files}

Need to remember to use “—author” every commit. If you
forget, can do:

S git commit —author=“Susan B. Anthony <dollar@treasury.com>" --amend

(if done before commit is pushed to GitHub)

2. Or set author for personal clone on analysis account:

cd directorywiththepersonalclone
git config user.name “your name”
git config user.email xxx@jlab.org

cat .git/config

3. Or set environment variables:

GIT AUTHOR NAME
GIT AUTHOR EMATL

mailto:dollar@treasury.com
mailto:dollar@treasury.com
mailto:xxx@jlab.org

The “.gitignore” file

Avoid including "derived” files and editor junk in git repository.
.0 files, executables, log files, intermediate files, etc.

Create afile ".gitignore” with one line for each thing to ignore.

*N

\#*\# git add .gitignore
*.0 git commit .gitignore
*.root

ROOTfiles/

Or edit “.git/info/exclude”

If for whatever reason you don’t want to edit .gitignore:
Add lines to

.git/info/exclude

with the same syntax as .gitignore

gitk — a useful utility

| JON gitk: hcana
i Stephen A. Wood <: 2017-06-22 16:29:01
. . . Added raw and good multiplicities. Deepak Bhetuwal < 2017-06-02 10:13:08
G ra ph |Ca| d IS play Of comm |t Good Hoda variables. AK1508 <ak1508@ 2017-05-31 17:39:26
Added good occupancies and multipli Ak1508 <akl508& 2017-05-30 17:54:39
H Stephen A. Wood < 2017-06-15 16:49:17
hlstory and Changes_ For travis build get latest scons with p Stephen A. Wood < 2017-06-15 10:01:58
Autogenerate HallC_Linkdef.h in Make: Stephen A. Wood < 2017-06-14 22:06:44
Get fixed parts of HallC_LinkDef.h fror Stephen A. Wood < 2017-06-14 20:52:00
Remove HallC_LinkDef.h from repo as ~ Stephen A. Wood < 2017-06-14 16:49:32
Updates to allow autodetection of *.h ¢ Edward Brash <bras 2017-06-13 07:37:13
Merge pull request #205 from MarkKJc Mark K Jones <jone 2017-06-15 09:19:53

g i t k Fliminata nrint ctatament far trarn r Ahichalk ¥arki ~al1 2017-0R_15 A0-17-73
a32dSc48a63abbfabf4cBcS1 atb 6608232360 | €= = Row 3/ 831
Find |) /N | commit containing: Exact All fields
Search opatch 1 Tree
. = . - . . Comments
© Diff (1 0Id version [| New version Lines of context: e oo piane.cxx
0 “edig” . 1 but Author: Ak1SBS {ak15PSEmsstate.edu> 2017-85-31 17:39:26 srefTHeScintillatorPlane.h
Commi tter: Stephen A. Hood <zviwoodBgmail.com> 2817-86-22 16:
r l g 4 S lml ar u Parent: 28053c69255bfeb3c493d08ed fAa677bde23e4 11 (Added good c
' ' Child: Gab4Afefad2ddsfAS2fddf27eeal 124245203409 (Added raw ar
W1 thout XWlndOWS - Branches: cuero, develop, remotes/forigin/develop,
remotes fups tream /deve Lop
Follows:
Precedes:
. . Good Hodo wariables.
On your v1i rtual machine Added to THeScintillatorPlane.h
Initialize and clear in THeScintillatorP lane.cxox
. . Add raw multiplicities for ADCs and TOCs
yum install tig

sre/THeScinti L latorP lane .oxx ——————-

index 94632cd..ffdb479 180644

BR -74,7 +74,7 BR THeScintillatorPlane: :THeScinti L latorP laned
P laneMum = planenum;

Or “gitx” on MacOSX @ﬂm;gmm;
-

fHaxHi ts=53;

fpTimes = new Double_t [fMaxHits];

ER -235,7 +235,7 B Int_t THeScintillatorP lane: tReadDatabase
cout << " cosmic flag = " << fCosmicFlag << endl;
/¢ fetch the parameter from the temporary list

git
git
git
git

cat

git — setting defaults — Exercise 0

config —--global
config --global
config --global
config --global

~/.gitconfig

user.

user

core.
push.

name Y“your name”

.email xxx@jlab.org

editor ”“emacs”
default simple

(or nano or vim)

mailto:xxx@jlab.org

Rebasing / Editing history

Starting from “master branch”

git checkout -b workbranch

Do some work, lots of commits /

git rebase -1 master

Edit the list and save

v

git log —--oneline
078c9pb0 Create filec
b64£990 Create fileb
b3a7efc Create filea
5376520 Initial commit

git checkout master
git merge workbranch

pick d8f7fa2 Start working on file a.

pick ae17be0 Start working a fileb

pick 082c27e More work on filea, didn't finish, had to go home
pick 2ee43df More work on file b

pick 393b333 Fix typo in file b

pick d5a2c39 Finish filea

pick d8df357 Something else

pick d8f7fa2 Start working on file a.

squash 082c27e More work on filea, didn't finish, had to go home
squash d5a2c39 Finish filea

pick ae17be0 Start working a fileb

squash 2ee43df More work on file b

squash 393b333 Fix typo in file b

edit d8df357 Something else

Rebasing — Exercise 1 — page 1

1. Start a new git project
mkdir hello ; cd hello ; git init ; git status

2. Create “README.md” file, “add” and “commit” it
emacs README.md
git add README.md
git commit README.md
glit status

/* hello.c */
#include ”stdio.h”

3. Create a working branch

git checkout -b workingbranch Main () {
printf (“Hello World\n”) ;
4. Create program “hello.c” }
./hello

cc -0 hello hello.c ;

emacs hello.c;
git commit hello.c

git add hello.c ;
git log

Makefile
hello: hello.o

5. Add a Makefile

emacs Makefile

Add and commit
glit status

Should see commits for README, hello.c and Makefile.

hello.o: hello.c

Rebasing — Exercise 1 — page 2

Add a line after the printf, but with a compile bug

git commit hello.c
make - Observe that it doesn’t compile

Fix the bug

git commit hello.c
.gitignore
Add a .gitignore file *.0
d hello
git status
emacs .gltignore ; commit .gitignore
glit status

Observe the history
git log

$ git log --oneline

8e00f82 (HEAD -> work) Add a git ignore file
5b591b8 Fix the sunshine bug

e9aed89 Add some sunshine

e5075c2 Add a Makefile

c8bfc82 First program

4718615 (master) First commit

printf (“Hello Sunshine\n”):

Use colon instead of semi-colon

A more complicated Change the history to look like:

11.

Rebasing — Exercise 1 — page 3

., pick c8bfc82 First program
Create .gitignore pick e5075c2 Add a Makefile
Create Makefile pick e9aed89 Add some sunshine

Create Working hello.c (with sunshine) pick 5b591b8 Fix the sunshine bug
/ pick 8e00f82 Add a git ignore file
git rebase -1 master

L)] pick 8e00f82 Add a git ignore file
Edit list to look like this / pick €5075¢2 Add a Makefile
Save rebase list pick c8bfc82 First program
: : squash e9aed89 Add some sunshine
Rewrite hello.c commit when prompted squash 5b591b8 Fix the sunshine bug

If you mess up, delete all the pick, etc. lines in the buffer and save. This will abort the
rebasing.

Merge "workingbranch” into master (or make pull request for collabortive project.)
git checkout master

git merge workingbranch

git log

git branch —-d workingbranch

Rebasing — Exercise 2 — page 1

In this exercise, we have developed two independent features in parallel in a
series of commits. Before merging with master (or pull requesting), we wish to
rebase into a single commit for each feature, hiding our messy development
process.

There are two problems:
1. After branching to “features_branch”, a change that conflicts with our changes

has been made.
2. On one commit we made include changes related to both features. We need

to split this commit into separate commits for each feature before squshing
related commits together.

1. Start a new git project
git clone https://github.com/sawjlab/rebase exercise rebase

cd rebase
git checkout features branch

This will show “CONFLICT” error
2. Resolve the conflict /
<<<<<<< HEAD

glit rebase master

emacs Jjustcode.c
(Oruse “git mergetool” if configured)

printf("Sieve of Eratosthenes\n);

[* Sieve of Eratosthenes */
>>>>>>> justcode: add a comment

printf("This is a program to compute prime ...

https://github.com/sawjlab/rebase_exercise

Rebasing — Exercise 2 — page 2

(continued)

Usually choose code before or after ====

Here, keep it all

Remove <<<<<, =====_and >>>>> [ines.

glit rebase —-continue

Split the combined commit
glit rebase -1 master
Replace “pick” with “edit”
Save buffer
glit reset HEAD~
glit commit Justcode.c
git commit printfs.c
glt rebase --continue

Reorder and squash
glit rebase -1 master

Reorder the commits.

For each feature, squash extra commits.

Merge into master (or make pull request)
git checkout master
git merge features branch

<<<<<<< HEAD
printf("This is a program to compute prime ...
printf("Sieve of Eratosthenes\n);

[* Sieve of Eratosthenes */
>>>>>>> justcode: add a comment

pick 239792e justcode, declare i

pick 2a9192a justcode: add a comment

edit calddcb justcode: bug fixes, printfs: print more numbers
pick a39322d justcode: Print out the primes

pick 53e26c¢1 justcode: Finally got it working

pick c174bac printfs: Add computation of Lucas Numbers

pick 239792e justcode, declare i

squash 2a9192a justcode: add a comment

squash 7a6adb1 justcode: bug fixes

squash c053fdf justcode: Print out the primes

squash 1c7674c justcode: Finally got it working

pick 0e5858d printfs: print more numbers

squash a38eb3d printfs: Add computation of Lucas Numbers

