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On the Menu
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▪ 2h Tutorial / Crash course in machine / deep learning supported 
analyses

▪ First half:

▪ Second half:

• Brief introduction to machine / deep learning
• Model Evaluation Metrics
• orkflows

• Hands-On Classification Example
• Presentation on deep learning workflow

https://colab.research.google.com/drive/1YFECp9LIt1-se2Aui3Ekww_WfkVuF8zf?usp=sharing


On the Menu
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Plot taken from Brenda Ngs talk at deep learning for science school 2019

https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit


On the Menu
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Plot taken from Brenda Ngs talk at deep learning for science school 2019

Today's focus

https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit


A Binary Classification Problem
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▪ 288k events with 2 (Particle) 
Species

▪ Each characterized by 3 variables 
(e.g. information from a detector)

▪ Species 1 is more abundant than 
species 0

▪ Task: Identify each species, based 
on the provided information
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Related problem at JLab : 
electron / pion separation with 
pions being the majority

▪ 288k events with 2 (Particle) 
Species

▪ Each characterized by 3 variables 
(e.g. information from a detector)

▪ Species 1 is more abundant than 
species 0

▪ Task: Identify each species, based 
on the provided information



A Binary Classification Problem
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This is what we see in our data

▪ 288k events with 2 (Particle) 
Species

▪ Each characterized by 3 variables 
(e.g. information from a detector)

▪ Species 1 is more abundant than 
species 0

▪ Task: Identify each species, based 
on the provided information



A Binary Classification Problem
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This is what we would like to 
see after identification

▪ 288k events with 2 (Particle) 
Species

▪ Each characterized by 3 variables 
(e.g. information from a detector)

▪ Species 1 is more abundant than 
species 0

▪ Task: Identify each species, based 
on the provided information



What are we looking for?
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▪ We could try to solve this "by hand"
▪ Use linear cuts to separate species (nothing 

wrong with this approach)
▪ Only drawbacks:

▪ Spend more time on tuning the cuts --> Use 
a more complex function ?

▪ What is the underlying function that helps 
us to separate the two species ?

• Overlapping regions cause misidentification
• Do not fully utilize (unknown) variable 

correlations --> Linear cut is too simple



What are we looking for?
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Mysterious Model

Find a model that mimics 
the underlying function



What we expect from our Model
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1. Predictive Power

2. Generalizability

3. Explainability

▪ Applicable to future data sets that we are unaware of
▪ Avoid overfitting (do not want a model that is tailored to 

one specific data set)

▪ This is a tricky one and a can of worms...
▪ Need to understand model performance on given data
▪ How do certain features impact the prediction ?
▪ This is an entire research field on its own

▪ Extract all available information withing the given data
▪ Utilize correlations, even the hidden ones
▪ Provide smallest prediction error possible



The Model

7GSPDA Workshop May 2024

Input Data Model Response



The Model

7GSPDA Workshop May 2024

Input Data Model Response

Linear Function Decision Tree Neural Network

and many more...



The Model
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Input Data Model Response

How do we set these ?



Model Training / Fitting

8GSPDA Workshop May 2024

Input Data Model Response
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Input Data Model Response



Model Training / Fitting
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Input Data Model Response

Today's focus



Optimization Techniques
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Model Preferred Optimization Method

Linear Model Chi-Square Minimization, SA, GA

Decision Tree Iterative Dichotomiser

Neural Networks Backpropagation

▪ Various optimization techniques on the market
▪ Simulated Annealing (SA), Genetic Algorithm (GA), Particle Swarm, 

Backpropagation,…
▪ Some models work better with certain optimization techniques than others



Training Strategy for our Classification Problem
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▪ Variables are summarized in 3D feature vector

▪ Our data is labeled

▪ Use supervised learning to train a model

▪ Use trained model to separate species

▪ What kind of model do we want to use ?

• Model learns labels
• Use only 75% of data for training (explain later what 

happens to the remaining 25%)



Neural Networks
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▪ Multilayer Perceptron (dense neural network)
▪ Network Architecture: Hidden layers + Neurons
▪ Learnable Parameters: Weights and Biases
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▪ Multilayer Perceptron (dense neural network)
▪ Network Architecture: Hidden layers + Neurons
▪ Learnable Parameters: Weights and Biases



A single Neuron
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A single Neuron
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Information from previous Neurons



A single Neuron
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Weights and Biases --> Adjusted during training



A single Neuron
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Tensor operations



A single Neuron

12GSPDA Workshop May 2024

Activation Function



Tensors
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Table from tensorflow

https://www.tensorflow.org/


Activation Functions

14GSPDA Workshop May 2024

Plots taken from Mustafa Mustafas talk at deep learning for science school 2019

https://drive.google.com/file/d/1KOvwbKkn9voXXBhblj7ZIfDWMEPFz2Ex/view


Activation Functions
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Plots taken from Mustafa Mustafas talk at deep learning for science school 2019

https://drive.google.com/file/d/1KOvwbKkn9voXXBhblj7ZIfDWMEPFz2Ex/view


The Universal Approximation Theorem
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Similarly formulated by the Stone-Weierstrass-Theorem 
(1990): "[...] there are no nemesis functions that can not 
be modeled by neural networks"



Backpropagation for Neural Networks 
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▪ Forward Pass: Pass data through network
▪ Compute error
▪ Backward Pass: Use error to update weights and biases

Image taken from Kodi Jahnavi

https://www.linkedin.com/pulse/guided-backpropagation-kodi-jahnavi


Parameter Updates and Loss Function
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Plots taken from Mustafa Mustafas talk at deep learning for science school 2019

and many more...

https://drive.google.com/file/d/1KOvwbKkn9voXXBhblj7ZIfDWMEPFz2Ex/view
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Plots taken from Mustafa Mustafas talk at deep learning for science school 2019

and many more...

Gradients are your friends!

Parameter Updates and Loss Function

https://drive.google.com/file/d/1KOvwbKkn9voXXBhblj7ZIfDWMEPFz2Ex/view


Gradient Descent and Optimizers
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▪ Gradient descent needed for convergence
▪ Learning rate is a crucial hyper parameter
▪ Variety of gradient (descent) based 

optimizers on the market

Taken from On Empirical Comparisons of Optimizers for Deep Learning

Plots taken from Jeremy Jordans blog

https://arxiv.org/pdf/1910.05446
https://www.jeremyjordan.me/nn-learning-rate/


Now what is Deep Learning ?
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Machine Learning Deep Learning

▪ Variety of algorithms
▪ Multilayer perceptrons < 3 hidden 

layers
▪ Decision trees
▪ Linear classifier
▪ ...

▪ Large neural networks
▪ Multilayer perceptrons >= 3 hidden layers
▪ Convolutional neural networks (computer 

vision)
▪ Graph neural networks
▪ Language models (Chat GPT)
▪ ….



Why Deep Learning ?
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Plot taken from Mustafa Mustafas talk at deep learning for science school 2019

https://drive.google.com/file/d/1KOvwbKkn9voXXBhblj7ZIfDWMEPFz2Ex/view


Challenges in Deep Learning
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▪ Computationally intensive --> Many algebraic operations --> Utilize GPUs
▪ Vanishing gradient problem --> Zero gradients --> No weight updates
▪ Overfitting --> So many parameters
▪ Larger models (e.g. Chat GPT) require distributed training across multiple GPUs

Need gradients for weight updates

No gradients, no updates



Training a Neural Network for our Classification Problem
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Hyper Parameter Setting

Architecture 2 hidden layers with 20 

neurons each

Activation Functions tanh for hidden layers and 

sigmoid for output layer

Learning Rate 1e-4

Batch Size 128

▪ 75% of data used for training
▪ 25% of data used for validation
▪ Trained for 70 epochs
▪ Loss converged to some value --> Is 

this good or bad?



Model Evaluation / Analysis (1)
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Input Data Model Response

Whatever is 
wrong here

or not properly 
adjusted here

Will show up here

==> Need to evaluate model AFTER training



Model Evaluation / Analysis (2)
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Input Data Model Response

▪ Core idea: Compare model response to known truth Y
▪ Could use the loss function

▪ Perform model evaluation on separate (validation) data set

• Single value only
• Helps to understand training progress
• Does not tell how well model generalizes

• Data NOT used for training
• Check how model performs on "unknown" data set --> Generalizability



Model Evaluation / Analysis (3)
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Input Data Model Response

Plot taken from Brenda Ngs talk at deep learning for science school 2019

https://docs.google.com/presentation/d/1ptGiBYFDvBwlQ_s1KPAcVI_dOpuoW5rHqRaRkQra6gA/edit


Evaluation Metrics
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▪ Depend on the underlying problem that you are trying to solve 
(regression vs. classification)

▪ Regression:

▪ Classification:

• Chi-Square
• Mean Squared Error
• Likelihood
• Model response
• ...

• Confusion matrix
• ROC-Curve
• Accuracy
• Model response
• ...
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▪ Depend on the underlying problem that you are trying to solve 
(regression vs. Classification)

▪ Regression:

▪ Classification:

• Chi-Square
• Mean Squared Error
• Likelihood
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Evaluating a Binary Classifier: Model Response
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▪ Check model response on 
validation data

▪ Response is continuous, but Y 
is discrete

▪ Need a function to discretize 
continuous values

▪ Model response plots are the 
first things to check !



Evaluating a Binary Classifier: Model Response

27GSPDA Workshop May 2024

▪ Check model response on 
validation data

▪ Response is continuous, but Y 
is discrete

▪ Need a function to discretize 
continuous values

▪ Model response plots are the 
first things to check !

Model is very certain here

Model is quite uncertain here



Evaluating a Binary Classifier: Model Response

27GSPDA Workshop May 2024

▪ Check model response on 
validation data

▪ Response is continuous, but Y 
is discrete

▪ Need a function to discretize 
continuous values

▪ Model response plots are the 
first things to check !

Threshold t



Evaluating a Binary Classifier: Counting

28GSPDA Workshop May 2024

Nearly all evaluation metrics for binary 
classification are derived from these quantities!



Evaluating a Binary Classifier: Counting
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Nearly all evaluation metrics for binary 
classification are derived from these quantities!



Evaluating a Binary Classifier: Confusion Matrix and Balanced 
Accuracy
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TP

TN FN

FP

▪ Confusion matrix summarizes 
performance for given threshold t 
(here: t=0.5)

▪ Diagonal: True Identification
▪ Off-Diagonal: False Identification
▪ Ideal classifier: Diagonal ~ 1.0 and 

Off-Diagonal ~ 0.0
▪ Used balanced accuracy for 

imbalanced data set

Observed for our model: Balanced Accuracy ~ 92%



Evaluating a Binary Classifier: ROC-Curve
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▪ Run scan over threshold t

▪ Compute rates for each t

▪ Plot TPR vs. FPR for all scans

▪ AUC = Area Under Curve 
(Ideally = 1.0)



Evaluating a Binary Classifier: ROC-Curve

30GSPDA Workshop May 2024

Low efficiency, but smaller 
errors on predictions

▪ Run scan over threshold t

▪ Compute rates for each t

▪ Plot TPR vs. FPR for all scans

▪ AUC = Area Under Curve 
(Ideally = 1.0)



Evaluating a Binary Classifier: ROC-Curve

30GSPDA Workshop May 2024

High efficiency, but larger 
errors on predictions

▪ Run scan over threshold t

▪ Compute rates for each t

▪ Plot TPR vs. FPR for all scans

▪ AUC = Area Under Curve 
(Ideally = 1.0)



Evaluating a Binary Classifier: ROC-Curve

30GSPDA Workshop May 2024

Sweet spot
▪ Run scan over threshold t

▪ Compute rates for each t

▪ Plot TPR vs. FPR for all scans

▪ AUC = Area Under Curve 
(Ideally = 1.0)



Evaluating a Binary Classifier: ROC-Curve
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▪ Run scan over threshold t

▪ Compute rates for each t

▪ Plot TPR vs. FPR for all scans

▪ AUC = Area Under Curve 
(Ideally = 1.0)

Don't go there: The model 
performs worse than a 
random guesser --> You are 
better off rolling a dice



Simple Robustness Analysis
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▪ What happens if trained model encounters data that is different to the training / 
validation data ? (e.g. different resolution effects in the detector)

▪ Alter validation data and feed it back into model --> Recompute performance
▪ When do we observe a significant drop in performance ?
▪ There exist better tests than this one



Machine / Deep Learning Workflow
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▪ Nearly every machine / deep learning analysis is based on these four steps

▪ Standardize analysis --> Enforce reproducibility and support collaborative efforts

▪ Dedicated generic framework developed in JLab Data Science Department



Machine / Deep Learning Workflow
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▪ Load data (from database, numpy array, ROOT-trees,…)
▪ Data types

▪ Commonly used data formats

• Digits
• Images
• Videos
• Texts

• .png files
• .npy arrays (numpy)
• .csv, .json (dataframes)



Machine / Deep Learning Workflow
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▪ Make sure that model can use data
▪ Feature engineering

Processing Method Example Why?

Adjust feature ranges Do not feed vector 

(0.001,10000,40) into 

model

Model is likely to focus 

on large values

Exclude values Acceptance holes in 

detector

Model may reconstruct 

false correlations

Select features Particle energies, 

angles,...

Feed "useful" information 

to model



Machine / Deep Learning Workflow
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▪ Used a MinMax scaler in our analysis
▪ All features are scaled to be between 0 and 1



Machine / Deep Learning Workflow
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▪ Update internal model parameters w.r.t to given data
▪ Make sure that model objective (loss) converges
▪ Using validation data helps to better judge training



Machine / Deep Learning Workflow
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▪ Evaluate model on separate data set --> Not used during training
▪ Determine model performance on validation data set --> Check for 

generalizability 
▪ Compare model performance to other analyses / models
▪ Decide if model needs to be retrained or is ready for deployment

AUC Balanced Accuracy

0.992 0.92

Highest possible score for 
both metrics: 1.0



Software and Tools
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Software Package Suited for Language

sciki-learn Machine learning with off the shelf models; 

Provides all tools to set up an entire ML 

workflow

python

tensorflow Customize deep learning models; Supports 

variety of diagnostic tools, e.g. tensorboard

python

PyTorch Customize deep learning models; High 

flexibiltiy for user to define own training / 

evaluation routines

python

keras Customize deep learning models; Supports 

tensorflow and pytorch; HPO tools

python

ROOT TMVA Machine learning with off the shelf models + 

Deep Learning with keras / PyTorch

C / C++ / python

Which one to choose? --> Depends on what you want to do and personal taste...

https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://root.cern/manual/tmva/


Summary & Outlook
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▪ Very brief introduction to machine and deep learning
▪ Discussed (physics inspired) binary classification example

▪ A few practical tips

▪ Many topics not covered in this talk

• Trained neural network
• Evaluated model on validation data
• Observed promising performance

• Always plot the response of your model
• Use as many diagnostic plots as possible
• Understand your model and avoid black boxes
• Make your work accessible to others
• Understand the data you are using
• You do not need machine learning to fit a line through three data points --> Keep it simple
• Have fun!

• Regression problems and multiclass classification
• Uncertainty quantification
• Hyper Parameter Optimization (HPO)
• Fairness and model explainability
• Unsupervised learning and reinforcement learning
• Convolutional neural networks, graph neural networks, generative models ...
• ...
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