Transition GPDs: Recent Results from CLAS

Kyungseon Joo

University of Connecticut For the CLAS Collaboration

UCONN | UNIVERSITY OF CONNECTICUT

June 12, 2024

JULO 2024

N* Electroexcitation studies with CLAS

- 1. N* program was a flagship program with JLab 6 GeV.
- 2. A rich spectrum of baryon resonances is known to emerge from QCD.
- Results on γ_vpN^{*} electrocouplings of spin-isospin flip, radial, and orbital excited nucleon resonances have been mapped out for a large range of Q².
- Measured electromagnetic transition (N->N*) form factors in electroproduction experiments describe the spatial distribution of charge and current in the dynamical system.

Summary of Published CLAS Data on Exclusive Meson Electroproduction off Protons in N* Excitation Region

Hadronic final state	Covered W-range, GeV	Covered Q ² - range, GeV ²	Measured observables	 dσ/dΩ–CM angular distributions A_b,A_t,A_{bt}-longitudinal beam, target, and beam-target asym- metries P⁰, P' –recoil and transferred polarization of strange baryon
π *n	1.1-1.38 1.1-1.55 1.1-1.70 1.6-2.00	0.16-0.36 0.3-0.6 1.7-4.5 1.8-4.5	dσ/dΩ dσ/dΩ dσ/dΩ, A _b dσ/dΩ	
π º p	1.1-1.38 1.1-1.68 1.1-1.39 1.1-1.80	0.16-0.36 0.4-1.8 3.0-6.0 0.4-1.0	dσ/dΩ dσ/dΩ, A _b ,A _t ,A _{bt} dσ/dΩ dσ/dΩ, A _b	
ηρ	1.5-2.3	0.2-3.1	dσ/dΩ	Over 150,000 data points!
K ⁺ Λ	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ ₽⁰, Ρ′	
K ⁺ Σ ⁰	thresh-2.6	1.40-3.90 0.70-5.4	dσ/dΩ P'	
π + π-р	1.3-1.6 1.4-2.1 1.4-2.0	0.2-0.6 0.5-1.5 2.0-5.0	Nine 1-fold differential cross sections	Almost full coverage of the final state hadron phase space

The measured observables from CLAS are stored in the CLAS Physics Data Base http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi

Integrated cross section at W < 2 GeV for $\gamma^* p \rightarrow \pi^+ n$ and $\gamma^* p \rightarrow \pi^0 p$

 \rightarrow States with different quantum numbers respond differently to increase in Q².

q3 and MB contributions in $\Delta(1232)3/2^+$ and Roper N(1440)1/2⁺

The meson-baryon cloud becomes the biggest contribution for $Q^2 < 1$ GeV², but almost vanishes for $Q^2 > 2$ GeV².

Generalized Parton Distributions (GPDs)

- 1. GPDs unify the concepts of the elastic nucleon form factors and the quark/gluon particle densities.
- 2. GPDs encode the 3-dimensional partonic structure of the nucleon by correlating the internal transverse position of the partons with their longitudinal momentum fraction.
- 3. GPDs quantify the distribution of energy, momentum, angular momentum, and forces in the nucleon, which allows one to discuss the mechanical properties of the quantum system.
- Total 8 independent GPDs of which 4 do not flip the parton helicity (twist-2), while the other 4 flip the parton helicity and are also known as transversity GPDs (twist-3) indicated by T in the subscript: H, H, E, E and H_T, H_T, E_T, E_T.
- 5. "Nucleon imaging" is a flagship program of JLab 12 GeV.

Study GPDs: Deeply Exclusive Processes

- Distribution Amplitude (DA) is involved as additional soft non pert. quantity

Beam spin asymmetry for DVCS and DVMP on the proton with CLAS12

6/10/2024

JULO 2024

$N \rightarrow N^*$ Transition GPDs

- 1. What is the spatial distribution of quarks in excited baryon states, and how does it differ from the ground state? Can we construct tomographic images of the baryon resonances?
- 2. What are the distributions of energy, momentum, and angular momentum carried by quarks and gluons in baryon resonances? Can we quantify the mechanical properties of the baryon resonances?
- 3. What is the distribution of quark tensor charge in baryon resonances? What is the gluonic structure of resonances?
- 4. The transition GPDs allow one to construct tomographic images of the N^{*} at the same level as the nucleon and discuss the QCD structure of resonances in these terms.

$N \rightarrow N^*$ Transition GPDs

K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023)

For the $N \rightarrow \Delta$ transition: 8 twist-2 transition GPDs

<u>For $N \rightarrow P_{11}(1440)$ transition: 4 (2+2) twist-2 transition GPDs</u>

For $N \rightarrow D_{13}(1520)$ transition: 8 (4+4) twist-2 transition GPDs

For $N \rightarrow S_{11}(1520)$ transition: 4 (2+2) twist-2 transition GPDs

JULO 2024

Physics content of transition GPDs

Transition GPDs connect the angular momentum of resonances to the motion and distribution of the partons within the exited baryon

→ Access to shear forces and pressure distribution within nucleon resonances via gravitational form factors → Extension of the formalism to resonances needed!

$$\int dx \ x \ H(x,\xi,t) = M_2(t) + \frac{4}{5}\xi^2 d_1(t) \qquad \mbox{V.D. Burkert, L. Elouadrhiri, F.X. Girod,} \\ \mbox{Nature 557, 396 (2018)} \end{cases}$$

→ Access to the anomalous magnetic moment and to the tensor charge of resonances
 → Extension of the formalism needed → Twist-3 transition GPDs

$$k_T^{u,d} = \int dx \bar{E}_T^{u,d}(x,\xi=0,t=0) \qquad \delta_T^{u,d} = \int dx H_T^{u,d}(x,\xi=0,t=0)$$

Non-diagonal DVCS / DVMP

factorization expected for: $-t/Q^2$ small, $Q^2 > M^2_{N^*}$ x_B fixed

N-> Δ (1232) transition GPDs: 8 twist-2 GPDs: 4 unpolarized, 4 polarized. K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023)

First Measurement of Hard Exclusive $\pi^- \Delta^+ +$ Electroproduction Beam-Spin Asymmetries off the Proton

S. Diehlo, 34,6 N. Trotta, 6 K. Joo, 6 P. Achenbach, 39 Z. Akbar, 46,12 W. R. Armstrong, 1 H. Atac, 38 H. Avakian, 39 L. Baashen, 11 N. A. Baltzell,³⁹ L. Barion,¹⁵ M. Bashkanov,⁴⁵ M. Battaglieri,¹⁷ I. Bedlinskiy,²⁸ F. Benmokhtar,⁸ A. Bianconi,^{42,20} A. S. Biselli,⁹ F. Bossù,⁴ K.-T. Brinkmann,³⁴ W. J. Briscoe,¹³ D. Bulumulla,³³ V. Burkert,³⁹ R. Capobianco,⁶ D. S. Carman,³⁹ J. C. Carvajal,¹¹ A. Celentano,¹⁷ G. Charles,^{21,33} P. Chatagnon,^{39,21} V. Chesnokov,³⁶ G. Ciullo,^{15,10} P. L. Cole,²⁵ M. Contalbrigo,¹⁵ G. Costantini,^{42,20} V. Crede,¹² A. D'Angelo,^{18,35} N. Dashyan,⁴⁸ R. De Vita,¹⁷ A. Deur,³⁹ C. Djalali,^{32,37} R. Dupre,²¹ M. Ehrhart,^{21,*} A. El Alaoui,⁴⁰ L. El Fassi,²⁷ L. Elouadrhiri,³⁹ S. Fegan,⁴⁵ A. Filippi,¹⁹ G. Gavalian,³⁹ D. I. Glazier,⁴⁴ A. A. Golubenko,³⁶ G. Gosta,^{42,20} R. W. Gothe,³⁷ Y. Gotra,³⁹ K. Griffioen,⁴⁷ K. Hafidi,¹ H. Hakobyan,⁴⁰ M. Hattawy,^{33,1} T. B. Hayward,⁶ D. Heddle,^{5,39} A. Hobart,²¹ M. Holtrop,²⁹ I. Illari,¹³ D. G. Ireland,⁴⁴ E. L. Isupov,³⁶ H. S. Jo,²⁴ R. Johnston,²⁶ D. Keller,⁴⁶ M. Khachatryan,³³ A. Khanal,¹¹ A. Kim,⁶ W. Kim,²⁴ V. Klimenko,⁶ A. Kripko,³⁴ V. Kubarovsky,³⁹ S. E. Kuhn,³³ V. Lagerquist,³³ L. Lanza,^{18,35} M. Leali,^{42,20} S. Lee,¹ P. Lenisa,^{15,10} X. Li,²⁶ I. J. D. MacGregor,⁴⁴ D. Marchand,²¹ V. Mascagna,^{42,41,20} G. Matousek,⁷ B. McKinnon,⁴⁴ C. McLauchlin,³⁷ Z. E. Meziani,^{1,38} S. Migliorati,^{42,20} R. G. Milner,²⁶ T. Mineeva,⁴⁰ M. Mirazita,¹⁶ V. Mokeev,³⁹ P. Moran,²⁶ C. Munoz Camacho,²¹ P. Naidoo,⁴⁴ K. Neupane,³⁷ S. Niccolai,²¹ G. Niculescu,²³ M. Osipenko,¹⁷ P. Pandey,³³ M. Paolone,^{30,38} L. L. Pappalardo,^{15,10} R. Paremuzyan,^{39,29} S. J. Paul,⁴³ W. Phelps,^{5,13} N. Pilleux,²¹ M. Pokhrel,³³ J. Poudel,^{33,†} J. W. Price,² Y. Prok,³³ A. Radic,⁴⁰ B. A. Raue,¹¹ T. Reed,¹¹ J. Richards,⁶ M. Ripani,¹⁷ J. Ritman,^{14,22} P. Rossi,^{39,16} F. Sabatié,⁴ C. Salgado,³¹ S. Schadmand,¹⁴ A. Schmidt,^{13,26} Y. G. Sharabian,³⁹ U. Shrestha,^{6,32} D. Sokhan,^{4,44} N. Sparveris,³⁸ M. Spreafico,¹⁷ S. Stepanyan,³⁹ I. Strakovsky,¹³ S. Strauch,³⁷ M. Turisini,¹⁶ R. Tyson,⁴⁴ M. Ungaro,³⁹ S. Vallarino,¹⁵ L. Venturelli,^{42,20} H. Voskanyan,⁴⁸ E. Voutier,²¹ D. P. Watts,⁴⁵ X. Wei,³⁹ R. Williams,⁴⁵ R. Wishart,⁴⁴ M. H. Wood,³ M. Yurov,²⁷ N. Zachariou,⁴⁵ Z. W. Zhao,^{7,33} and M. Zurek¹

(CLAS Collaboration)

$ep \rightarrow e\Delta^{++}\pi^- \rightarrow ep\pi^+\pi^-$ with CLAS12

→ Data recorded with CLAS12 during fall 2018 and spring 2019 (RG-A)

➔ 10.6 GeV / 10.2 GeV electron beam ~ 86 % average polarization

➔ liquid H₂ target

$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$

Factorization expected for:

-t / Q² << 1, x_B fixed, and Q² > M_{Δ}²

 \rightarrow Provides access to p- Δ transition GPDs

$$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$$

I_z = +3/2

The pπ⁺ final state can **only** be populated by **Δ-resonances** -> Large gap between $\Delta(1232)$ and higher resonances

Event Selection and Kinematic Cuts

Signal and Background Separation

 $M(\pi^{+}\pi^{-}) > 1.1 \text{ GeV}$

Resulting Beam Spin Asymmetries (Q²-x_B integrated)

Results

$e|\,p\rightarrow e^{\textrm{`}}\,N^{\star \star}\,\gamma\rightarrow e^{\textrm{`}}\,n\,\,\pi^{\star}\,\gamma$

CLAS12 RG-A: fall 2018 inbending fall 2018 outbending spring 2019 inbending } E_{beam} = 10.6 GeV E_{beam} = 10.2 GeV

- One electron in the FD p > 2.1 GeV
 → Fiducial cuts for DC and PCAL + v_z cut + PID refinements
- One π⁺ in the FD or CD (no other charged particles) p > 0.2 GeV
 → Fiducial cuts for the DC + Δv₂ cut + |chi2PID| < 3
- At least one neutron in the FD or CD 0.25 GeV < p < 1.95 GeV
- At least one photon in the FT or FD E > 2 GeV
 → Fiducial cuts for the PCAL (v,w > 14 cm) + 0.9 < β < 1.1

Kinematic cuts: W > 2 GeV Q² > 1.5 GeV² y < 0.8 -t < 2 GeV²

Background rejection

Signal: $e p \rightarrow e' N^{**} \gamma \rightarrow e' n \pi^* \gamma$

Physics background: $e p \rightarrow e' n \rho^+ \rightarrow e' n \pi^+ \gamma$ (very rare)

→ Also radative decays of other mesons (e.g. f₂) and nucleon resoances are very rare!

Event selection background: e p \rightarrow e' n p⁺ \rightarrow e' n $\pi^{+}\pi^{0}$ \rightarrow e' n $\pi^{+}\gamma$ (γ) (I)

e p \rightarrow e' N^{*+} $\pi^0 \rightarrow$ e' n $\pi^+ \pi^0 \rightarrow$ e' n π + γ (γ) (II)

This are the main background channels

- I: Can be suppressed (next slide)
- II: Needs to be subtracted on a bin by bin (work in progress)

JULO 2024

M_{nπ+} [GeV]

Theoretical predictions for CLAS12 kinematics

K. M. Semenov-Tian-Shansky, M. Vanderhaeghen, Phys. Rev. D 108, 034021 (2023)

JULO 2024

ep->e $\gamma n\pi^+$ vs. ep->e $n\pi^+$

JULO 2024

Electron Scattering Binning Scheme

	Resonance Region	DIS Region
Inclusive Scattering	Q ² , W	Q ² , x _B
Exclusive Process (γ , π , ρ , ϕ ,) Q², W, cosθ*, φ	Q², x _B , -t, φ

Off-diagonal DVCS or DVMP

Q², x_B, -t, $\phi,$ $M_{\pi N},$ cos $\theta^*,$ ϕ^*

Summary and Outlook

- 1. Hard exclusive $\pi^-\Delta^{++}$ production has been measured with CLAS12 and provides a first observable sensitive to N-> Δ transition GPDs. (Phys. Rev. Lett. 131, 021901 (2023))
- 2. The obtained BSA is clearly negative and ~ 2 times larger than for π^+

Outlook

- 1. The N->N* DVCS and N->N* DVMP processes are under investigation by scanning a wide range of invariant mass of N π .
- 2. First data on these reactions are becoming available from experiments at JLab12, but detailed strategies for their analysis and theoretical interpretation need to be developed.
- 3. A new proposal would be submitted to JLAB PAC in the near future for high statistics run in 7D: Q², x_B , t, ϕ , $M_{N\pi}$, θ^* , ϕ^*

UCONN | UNIVERSITY OF CONNECTICUT

BACKUP

Sources of Systematic Uncertainty

1. Uncertainty of the background subtraction

- → <u>2 sources of uncertainty</u>: S/B ratio and sideband asymmetry
- → Both sources were varied within their uncertainty range
 - → Typically in the order of 1.5 % (low -t) 12.5 % (high -t) (stat. ~ 12 25 %)
 - ➔ Dominant sys. uncertainty for the high -t bins
- 2. Uncertainty of the beam polarization ~ 3.1 %
- 3. Effect of the extraction method and the denominator terms ~ 2.8 %
- 4. Acceptance and bin-migration effects ~ 2.9 %
 - → Comparison of injected and reconstructed BSA in the MC
- 5. Radiative effects ~ 3.0 %
- 6. Other sources (particle ID, fiducial cuts, ...) < 2.0 %

Total: 7.1 - 14.3 %

Event Selection and Background Rejection

